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Abstract. The approach to analysing the measurement results o f  a levelling network which was 
established to identify the vertical displacements o f  the earth dam crone o f  a waste pond was presented in the 
paper. The obtained measurement results carried out by a precise levelling method were used in determining the 
precise displacements o f  the controlled points in the time function. The non-linear models o f  a kinematic network 
were applied to describe the displacements. A numerical evaluation o f  periodic measurement results was carried 
out by classical algorithms and neural networks. The neural networks recognized as the sophisticated modelling 
techniques were able to copy the non-linear functions.
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Introduction
The kinematic state of a geodetic measuring-controlling network is determined on the basis of 
the estimated parameters values of a given kinematic model. This model describes the points 
movement. The kinematic model of a geodetic network differs from the static model because 
it also enables to record the object deformation changes in time and in space. The following 
three issues have been taken into consideration while analysing the measurement results in the 
kinematic way: determination of a hypothetical model structure, estimation of numerical 
values, checking the model adequacy (its structure and the estimated values).

The characteristics of a given object
The waste pond, consisting of two chambers, was located on the area o f an industrial 
establishment. The sketch o f a geodetic network consisting of 30 measurement points located 
on the earth dam crone of the waste pond was presented in the fig. 1. The points were located 
according to the project made by the experts in geotechnics. The measurement periods were 
carried out within the years 2001-2004. Calculations were done by the precise levelling 
method by the means o f a levelling instrument Ni 007 and at the same time the 70 height 
differences were observed in each measurement period.
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Fig.l. The sketch of the points arrangement of a measuring-controlling network
The data analysis
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The displacements research was preceded by the data analysis. The simplest protection was 
applied to avoid observation errors which had the values severally crossing the limit of 
random errors in the form of the loop traverse closing. The error value m[6h] =2mjn+ri was

assumed as the correctness criterion of the done observations. The value m means a 
measurement square error of a single height difference and the values n and n ’ mean the 
number of the levelling instrument stations in the „forward” and „backward” direction. The 
precise control was carried out on the basis of the correction number ratio to its square mean 
error:

v
' — < 2  ( 1 ) 

mv

The diverged observations (|v| / mv) > 2 were eliminated on the basis of the observation

adjustment results done by a least square method within the minimal limitation of the freedom 
degrees.

The sensitivity of the displacements model
The application of a definite structure of the displacements model in the description of the 
kinematic state of a network requires the precise analysis of the model due to its sensitivity. 
The model sensitivity can be calculated by the following scalar coefficient:

a = n " S )  (2)
where: a -  sensitivity of a model

oo -  mean error o f a typical observation 
5 -  non-centrality parameter

T
A,mjn -  minimal eigenvalue matrix of the normal equation system (M=A PA)

The value of the above-presented coefficient (2) stands for the least absolute deformation 
value which may be detected by the given model. The non-centrality parameter is the basis for 
calculating the sensitivity of a model. This parameter was calculated according to Gil’s 
(Gil, 1995) suggestion in this paper. The non-centrality parameter can be calculated from the 
correlation:

6  = (3)

where: AE -  the increase of the square norm of the corrections’ vector V determined on the 
basis of an observation system adjustment within the minimal limitation of the 
freedom degrees and the adjustment fixed on the assumption of the absolute 
constancy of the reference points set.

Go -  mean error of a typical observation
The maximum value of the non-centrality parameter reached the level of 8  = 2.0 but 
sensitivity of a model reached the level of a=l .4 mm

The geometry of the least square method
The adjustment issues in the linear and non-linear aspects are connected with the knowledge 
of the geometrical aspects of a least square method. In the case o f a linear model the plane is 
the space estimation (fig.2 ) but in the case of a non-linear model the surface is the space 
estimation (fig.3). Minimization of the sum of the second powers corrections V(X) of a linear
model aims at searching for an estimator X of parameters’ vector X  in order to place a given 
point P(Pi, P2 , ..., Pn) located in the estimation space as a vector L = AX as close as possible 
to the point L determined by an observation vector ).
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Fig. 2. The geometry of the least square method in the linear aspect

In the case of a non-linear model minimization of the sum of errors second powers to 
observations V(X) aims at searching for such an estimator L = A (X) in the estimation space 
which is located closely to the point determined by an observation vector L{tx,l2,...,lm)
(fig-3).

Fig.3. The geometry of the least square method in the non-linear aspect

The non-linear feature of the displacements model
The non-linear model can be presented in the general form as:

E(L) = A(X) (4)
where: E -  operator of an expected value (the average value of a random variable L)

L -  observations vector
A -  non-linear projection which assigns an observation vector L e R m to the 

parameters’ vector X e R " ,  provided that m > n 
Rm -  measurements space 
Rn -  parameters space

Most of the adjustment tasks were proceeded by the linearization of a non-linear model in the 
point of the known approximation Xo in the form of:

E (A L )= 0A (X o)AX (5)
where: dA (X) - partial derivatives matrix of A projection
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Fig. 4. Linearization of a non-linear model A(X)

A reference system identification
The correct defining o f the displacements model depends on the way the reference system is 
defined. Gil’s method of defining a reference system (Gil, 1995) was adopted in the paper. 
This method consists of the two stages:
-  the preliminary identification,
-  the final identification.
The preliminary identification aims at determining the most possible numerous set of points 
which can remain the reciprocal constancy within the defined approximation. The idea of the 
two adjoing objects (O1) and (O2) represented by the two n-element sets of points {S 1} and 
{S 2} in the space R 1 was applied to search for an object location (O2) with regard to the object 
(O1) in order to the differences of their geometrical internal features would reach the minimal 
value. The optimal solution can be found on the segment between the two points or in the one 
of the extreme points. If the numbers of sets points {S 1} and {S2} are sorted out provided that 
the lengths hj fulfil the condition h, < h 2 < ....<  hn, hence, the function of the sum of absolute 
divergences reaches its minimum in the range of hn/2 < x < hn/2+i for the even number of 
points (fig.5) but for the odd number of points, the function of the sum of absolute 
divergences reaches its minimum in the point x = hfn+])/2 (fig.6 ).

Fig. 5. Minimum sum of absolute divergences for the even number of points

Fig. 6. Minimum sum of absolute divergences for the odd number of points
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Defining a reference system in the final version aims at doing research on the reaction of an 
observation system which is caused by the increase of points number fulfilling the condition 
of the absolute constancy in the process of adjustment. The differences values of geometrical 
features of points sets { S 1} and {S 2} can be sorted out according to the increasing absolute 
value |wtj <|w2| < ....<  |wn| on the basis o f the preliminary identification. The consecutive

network adjustment within the absolute constancy of its points can be done provided that the 
increase of the number of constant points according to the fixed order is taken into 
consideration. This can be done until the increase of the second power of error corrections 
norm reaches the critical value AE :̂

AEk = - 2 (m2 + ----) ln(l -  P k ) (6 )
2  r

where: P -  probability value
m -  mean error of a single observation defined from the adjustment within the 

minimal limitation of freedom degrees 
r -  number of supernumerary observations 
k -  number of points within the absolute constancy assumption 

The way of identification of a reference system for the obtained measurement data was 
presented graphically in the fig.7.

points numbers

Fig. 7. Identification of points of a reference system on the basis of a critical value AE^

Finally, the reference system was defined on the following four points 7, 8 , 9, 13, which 
remained the reciprocal constancy in the whole period of measurement process.

The models of kinematic networks
The general form of a kinematic model of vertical displacements of the geodetic points 
network shows the following formula:

Ah = Ah(t,x) (7)
where: Ah -  change o f height difference 

t -  time (real variable) 
x  -  parameters vector

The following three kinematic models were applied in the paper:
1 . A/z, (t , a )  = a l + a 2t + a 2t 2 (8 )
2 . Ah2(t,a )  = « [ + « ,  e x p (-a 3 t) (9)

3.
4 7 , a .t a 3 
A/?3 (t, a ) = — 1—  + —  

a 2 + t t
( 1 0 )
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The optimized neural network
The optimized neural network with the circular structure was used in the process of estimation 
of parameters of points movements in both the linear and non-linear model. This optimized 
neural network was applied to solve a system of equations in the form of (Osowski, 1996):

Ax = I (11)
where: A e R m>tn -  (m>n) matrix of coefficients of equations system corrections 

x e R 11 -  vector of the unknowns 
\eR m -  vector of absolute terms

The task solutions aimed at defining the coefficients of parameters vector x which was to 
meet the condition (12) with the smallest error (Osowski, 1996). Hence, the objective function 
can be presented in the following formula:

F(x) = (Ax -  l)r (Ax -1 ) = I Ax - 1|| -> minimum (for x e R n ) (12)
In order to minimize the sum of the second power of observation correction, the gradient 
method was also applied to solve a differential system of equations written in the matrix form:

—  = -pVF(x) = -pA T(A x -l)  (13)
dt

where: VF(x) =
ÔF ÔF SF
ôx, dx2 dxr

-  AT (Ax - 1) - the gradient vector defined by partial 
derivatives of the objective function 
with regard to individual variables

p - neural network learning coefficient within the range o f (0 , 1 )

The obtained results
Firstly, the values of points displacements were determined on the condition that the network 
was static. The calculations were done by the means of least square method within the defined 
reference system based on the points 7, 8 , 9, 13. The calculated displacements were in the 
range of -5,9 - +2,2 mm (fig. 8 ) in the course of the whole measurements periods.

---------»---------01-02

— -0 1 -0 3

- - * -  - 01-04

Fig. 8. The diagram of displacements calculated by a least square method

The model (8 ) in the form of quadratic polynomial is a linear model according to the 
parameters vector x=(ai, ot2 , 0 ,3 ). The coordinates values o f this parameters vector can be 
determined either by a classical procedure of the least square method or by a neural network. 
As a result of the application of the above-mentioned algorithms the deflection differences 
among those three models were within the range of 0,01-0,07 mm. The state of a kinematic 
network described by the model (8 ) was shown in the fig.9.
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points numbers

Fig.9. The diagram of points displacements for the model (8) defined by a least square
method and by a neural network

The expected results were not achieved in the process of the model linearization (9) in the 
form of the exponential function because the mentioned model could not be transformed into 
a linear one. Hence, this parameters model were estimated by a hybrid method according to 
the following way:
- the estimation of parameters a i and 0 ,2  of a linear model for (X3 equalling a given constant,
- the estimation of parameters a 3 of a non-linear model for a i and a.2 having the constant 

values.
The linear estimator o f the vector parameter oq i a 2 was being searched by an iterative 
Jacobi’s method. While the non-linear estimator a 3 was determined by the biggest descent 
method. The displacements diagram was presented in the fig. 10. In the case of neural 
networks the problem of estimation of points movements parameters can be solved by a 
neural network based on the conjugation gradients method (fig. 1 1 ).

♦ ' 01-021=0.33

----- -«  -  —  01-031=0.67

01-041=1.00

Fig. 10. The diagram of points displacements for the model (9) calculated by
the hybrid method

F ig .ll . The diagram of points displacements for the model (9) calculated by a neural 
network basing on the conjugation gradient method

68



The difference in displacements calculated by the exponential model and the polynomial 
model was within the limit of 1 mm.
Michaelis-Menten’s modified model (10) was compiled by a neural network with the 
application of a bipolar activation function with the fixed value of a slope coefficient p=0,05. 
The non-linear activation functions did not generally improve the process of parameters 
estimation. The displacements values calculated by this model were graphically presented in 
the fig. 12.

Fig. 12. Displacements determined on the basis of the modified Michaelis-Menten’s 
model (10) calculated by a neural network with the application of a bipolar

activation function
The general characteristics of this model accuracy and the accuracy of a model in the form of 
an exponential function reached the level of a mean error of a single observation mo=0,5-0,6 
mm, while the coefficients differences of displacements vectors determined by those two 
above-mentioned models and by the polynomial were within 1 -h 3 mm range.

Conclusions
• The values of mean errors of a single observation mo resulted from the application of a 

neural network and classical algorithms were within the range of 0,4 -f 0,6 mm.
• The differences of displacements values determined by the above-mentioned models were 

within the range of 1 4- 3 mm provided that the whole measurements periods were taken 
into consideration.

• A neural network applied in estimation of kinematic models of a vertical measuring
controlling geodetic network has been an effective tool providing us with authoritative 
results.
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