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Abstract. The article deals with the issue of estimation of the area models errors determined on the 
basis of a discrete points set with the given values of space coordinates (x, y, z). The object was assumed to be 
described by shape functions in the form of the elliptic paraboloid and the hyperbolic paraboloid. The digital 
task accomplishment consisted in the statistic verification of errors of the models determined by neural networks 
and by the accomplishment of adjustment tasks. Modeling by the means of neural networks was carried out by 
the unidirectional multilayer networks with the application of gradient methods of optimalization and by 
Resilientback Propagation algorithm (RPROP). The obtained results were compared with the following results 
of approximation of the second and the third degree of polynomial, the b-spline function and the kriging’s 
method.
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Introduction
The problem of specifying the form of a surface over a particular set o f points can be 
discussed from the geodesic point view in terms of statistical verification in two cases, 
namely [3,4]:
• points Pj (i = l,2,...,m ), which hale been assigned theoretical coordinates

(i = h 2 ,...m ) ,

• points Pj (i -  with empirical coordinated x t ,y t , z; (i = \,2,...m).
If we put forward the hypothesis that the form function with n parameters assumes the form

F ( x , y , z )  =  0,
then for points with theoretical coordinates estimation of errors o f the model consists in 
solving the problem of minimization

m m

min X  rfi )»
;=1 ;=1

where v/( (/ = l,2,...,m ) represents the differences between the value of the function specified 
on the basis of theoretical coordinates and the value of the function obtained from the process 
of minimization.
When we consider empirical coordinates of points we will deal with an equalization task in 
the general form

m

Z 2 2 2v x f + v y t + VZf 

i-\
at that

F ( x ° bs + v x i , y ° bs +Vy „ z ? bs + v z j ) =  0 for P l , . . . , P m .

In this case errors o f empirical coordinates are particularly important in terms of modeling 
objects.
In order to analyses estimation of errors of the model we have been trying to find the 
minimum function spread over the assigned set of points with theoretical coordinates. Two
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cases of estimation of errors model obtained from the solution o f the equalization task with 
regard to basis form functions have been analysed:

X  Vequations o f elliptical paraboloid z = —  + - (fig . 1 a),
a2 b2

equations of hyperbolical paraboloid z = (fig. lb).

Fig. la  Fig. lb
Fig.l. The elliptic paraboloid and the hyperbolic paraboloid for a=4 and b=4

The solution of this problem facilitates a critical analysis of the effectiveness and precision of 
the representation of the terrain model by means of neural networks, which are a universal 
approximation system reflecting multidimensional data sets without the necessity to formulate 
a form function. However, the use of neural networks requires a suitable network structure, a 
particular number o f learning standards for a general number of points and choice of a 
suitable activation function (it can be different in the hidden layer and output later).

Materials and methods
Artificial neural networks are systems in the form of configurations o f neurons, whose 
computing power makes it possible to achieve a representation from input space to output 
space [2,5].
The basis for the algorithms applied for teaching the network is an objective function (an 
energy function), defined by means of the Euclides algorithm as the sum of the squares of 
differences between the current values of input signals of the network and the allocated values 
in the form:

1  i=1 Z  ;=1 7=1

where:
p  - number of input vectors,
M  - number of coordinates of the input vector,
y-j - coordinate of the input vector(/ = 1,2,..., p), ( j  = 1,2,...,M ),

d j  - coordinate of the allocated vector(z = l,2 ,...,p ), ( j  = 1,2,..., M ).
On the assumption that the objective function is continuous and gradient optimisation 
methods are used, the adaptation of the vector of weights is carried out according to the rule:

wf ^  = wf )  + AwW (2)

where k is the number of a subsequent iteration.
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In the process of the minimization of the objective function and the sigmoidal activation 
function adopted, the increase of coordinates of the vector of weights

Aw = - i)p{w) (3)

where p{w) =
dE_
dw

is a direction in the multidimensional space w , and tj is the learning

coefficient.
In order to obtain similarities with the optimum solution the following quasi Newtonian 
methods have been used: the method of a quasi-Newton algorithm, conjugate gradients, and 
the Levenberg -  Marquardt method.
The algorithm carried out via the quasi-Newton method uses information on the curve of the 
objective function being minimized. In quasi-Newton methods the hessian matrix is 
approximated by means of the difference of first rank derivatives. This method does not 
require the difficult-to-satisfy (in general) condition of the positivity of the hessian in each 
iteration, which facilitates the practical implementation of the algorithm. We will be looking 
for a stationary point w* of the minimum of the objective function E(w) in the direction

and the reverse matrix o f the approximated hessian V ^

(4)

[G(w f k) as a matrix modified

from the previous iteration (the starting value V° = 1 ) has been described with the Davidon -  
Fletcher -  Powell recurrent dependence [5]

r(k) _ r(k- O + s (5)

where and r 'k) denote respectively the increase o f the vector of weights w and the 

gradient g(H’) in two subsequent iterations, -  w^kA\  = g (w fk  ̂ - g (w fk '■.
The Levenberg -  Marquardt method is very similar to the quasi-Newton method, which also 
uses the square calculation of the objective function E(w ) and an approximated value of the 
Hessian G (h’) including a regularization factor. When the objective function is defined as (1) 

the approximated matrix o f the Hessian has the form
G(w)= j(w)r j(w)+ Jl(w) (6 )

where:
j ( w ) - Jacobian of the function (1)
7?(w>) - summands of the expansion of the exact value of the hessian H ( w) by
means of the regularization factor r 1 (or r l).
After introducing the regularization factor into the formula (6) we obtain a form of the matrix 
of the hessian equivalent to the expression (6)

G (w )^  = j ( w ) ^  j ( w j k) + r Wl  (7)

The efficiency of the algorithm depends on the choice of the scalar coefficient r ^ l . At the 
beginning of the learning process, when the value of the function E{w) is great, the

regularization factor r ^ l  assumes great values. As error is reduced and the solution gets 
closer the parameter r ^ l  is reduced down to zero.
The method of connected gradients uses the square model of the objective function without 
the necessity to use a number of matrix calculations in each iteration. The directions 
p{,p 2, . . . ,p n are called directions connected to the symmetrical, strictly positive matrix G , if
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p ,TGpj = 0  i * j  (z, j  = 1,2, ...,n )  (8)
Directions of the connections are generated on the basis of information about new derivatives 
and former directions. Using concise notation including the assumption (8), the direction 
vector in the klh iteration

p<‘> = - £ ( „ , ) « ( 9 )
where:

g (w fk  ̂ - gradient vector,

J3̂ k~^ - connection coefficient.

The coefficient J3̂ k~^ should be chosen in such a way that the direction p ^  is connected to

the direction p^k ^ . The best known theorem for specifying the coefficient J3[K lj (a method 
by the Polish scientist Riebiere) is expressed with the formula [5]:

( * - i )

P(*■-j) = g(wf  ] (g(^)(A) ~g( wf k~l)) ( 10)

The essence of the RPROP algorithm (Resilient Backpropagation algorithm) consists in 
updating weights according to the sign of only the summands of the gradient, regardless of its 
value [1,5].
Correction of weights is effected according to the dependence

-?/^sgn(v.E(w')^), (11)
where the learning coefficient 77 depends on the sign of the gradient. The coefficient 77 is 
chosen in each cycle for each weight w individually. The value o f this coefficient increases 
when the sign of the gradient in two subsequent iterations is the same, if  not it decreases. 
Thus

dla V E {w fk)VE(w ){ k > 0 

dla V £(w)(a)V £ (hi)(*_i) < 0 (12)

w innym przypadku

min1W *  l),?7min)
77« =■ max p ij{k~l),îl max)

77^ )

The symbols a and b in the formulas are constants: a = 1.2, ô = 0.5 and 77mjn and r]max 
denote respectively the minimum and maximum value of the learning coefficient, equal in the 
ROROP algorithm respectively 10’6 and 50 [5,6]

Results and discussion
The representation of surfaces described by means of form functions -  elliptical paraboloid 
and hyperbolical paraboloid has been effected for a training set o f 20 points, a test set of 320 
points (fig. 2a and 2b) for a network with the architecture 2_5_1 and 2 1 0 1  with the use of 
the bipolar activation function in the form

1 -  exp (- Anet)
y = f ( n e t )  =

1 + Q\p{-Anet) '
A >  0 (13)

In the learning process the change o f the learning terror of two consecutive iterations le-10 
and the number of iterations on the level of 20000 have been adopted as the criterion for the 
termination of the minimization process.
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Fig.2. The layout of training set points -  the elliptic paraboloid (2a) 
and the hyperbolic paraboloid (2b)

The results of learning and testing the network in the form of the mean error

m S E  = - ~ j ^ J d i - y i)2 (14)

and the results of obtained by means of spline and kriging approximations have been 
compared in table 1 and 2 an represented graphically in fig. 3.

Table 1.
The results of the area models projection -  the networks architecture 2 5 1

The approximation method
The elliptic paraboloid 

error RMSE [m]
The hyperbolic paraboloid 

error RMSE [m]
training set testing set training set testing set

RPROP algorithm 0.04 0.07 0.06 0.07
Backpropagation algorithm 0.65 0.78 0.72 0.79
Conjugate gradient algorithm 0.17 0.19 0.25 0.28
Quasi-Newton algorithm 0.01 0.00 0.02 0.00
Levenberga -  Marquardta 0.02 0.02 0.01 0.01
Spline approximation 0.02 0.03 0.01 0.02
Kriging approximation 0.07 0.10 0.07 0.08

Table 2.
The results of the area models projection -  the networks architecture 2 10 1_____

The approximation method
The elliptic paraboloid 

error RMSE [m]
The hyperbolic paraboloid 

error RMSE [m]
training set testing set training set testing set

RPROP algorithm 0.02 0.04 0.05 0.06
Backpropagation algorithm 0.53 0.64 0.62 0.65
Conjugate gradient algorithm 0.12 0.14 0.20 0.24
Quasi-Newton algorithm 0.00 0.00 0.00 0.00
Levenberga -  Marquardta 0.00 0.00 0.00 0.00
Spline approximation 0.02 0.03 0.01 0.02
Kriging approximation 0.07 0.10 0.07 0.08
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Fig.3. The errors values RM SE  [m] for the testing set 
depending on the approximation method and the networks architecture

Conclusions
The approximation of the square form of three real numbers x ,y ,z  (elliptical paraboloid and 
hyperbolic paraboloid) by means of second and third rate polynomials and by means of one 
direction multi -  layer networks taught by means of the Levenberg -  Marquardt changeable 
metric method brings the best results in terms of quality. Slightly greater errors are obtained 
by the use of the heuristic algorithm RPROP and spline and kriging approximation. At this 
point it is necessary to add that the algorithm RPROP requires approximation 10 times more 
iterations in order to achieve convergence than basic gradient methods. The worst results have 
been obtained by the use of the method of the greatest fall, because o f linear convergence and 
slow progress of minimization around the optimum point.
On the basis of the results obtained it is possible to say that the approximation of surface 
models described by means of basic form functions does not differ in terms o f quality form 
the approximation obtained by means of traditional methods. It is merely necessary to meet 
all the requirements concerning the obtainment of the local minimum, located near the global 
minimum.
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