
28

Development of Software for Design
Ontological Representations of Production

Technologies
Dmitry Andreev

Faculty of Computer Science and
Electrical Power Engineering

Pskov State University
Pskov, Russia

dandreev60@mail.ru

Sergey Lyokhin
Faculty of Computer Science and

Electrical Power Engineering
Pskov State University

Pskov, Russia
slyokhin@gmail.com

Victor Nikolaev
Faculty of Computer Science and

Electrical Power Engineering
Pskov State University

Pskov, Russia
nvv60@mail.ru

Olga Poletaeva
Faculty of Computer Science and

Electrical Power Engineering
Pskov State University

Pskov, Russia
oapoletaeva@mail.ru

Abstract—The features of the progressive methodolog-
ical basis for the construction of formalized descriptions
of technologies for their subsequent analysis are discussed.
The existing possibilities of ontological knowledge engineer-
ing applied to the problem of the structural representation
of technologies using computer tools are noted. Presented
functionality of the developed software that allows auto-
mating staged algorithmic procedures for constructing uni-
fied decomposition structures of formalized descriptions of
technologies. Analysed following development tools: Java
Standard Edition programming platform, “Eclipse” IDE,
Java programming language, PostgreSQL database man-
agement system, “Swing” library for creating a graphical
interface and “JGraphX” library for graphs visualization.
Database structure of the developed software is described:
shown database schema, database tables are defined and the
links between them are indicated. The architecture of the
developed software is presented: shown data flow scheme
and the purpose of each of the modules is described. The
main advantages of the developed software “OntoTechnolo-
gy” is designated, which shows the practical significance of
the results.

Keywords — concept, link, module, table.

I. IntroductIon

In recent years, methodological conceptions based
on ontologies received development in the field of
formalization of technological knowledge based on their
structural representation. This fact looks logical, since it is
ontologies that provide the possibility of comprehensive
and detailed formalization of a certain field of knowledge
by means of conceptual schemes, which are the systems
of concepts interconnected according to certain rules [1]
– [3].

The ontology as a generalized scheme of knowledge

representation is based on various methods of knowledge
conceptualization and methodological considerations
of the development of tools for their analysis [4], [5].
Conceptualization is one of the most important processes
of human cognitive activity, it implies processing the
incoming information and leads to the formation of
concepts, conceptual structures and the entire conceptual
system in the human mind. Its purpose is constructing
an abstract model that determines the structure of the
simulated field of knowledge, the properties of its
components and causal relations connecting them [6].
Thus, such conceptual model first and foremost consists
of certain cognitive structures of special knowledge
(mental essences, notions, concepts) and the relations
between them.

Technologies need obligatory ontologization
before their application, thus, if the knowledge about
these technologies goes beyond anthropocentric
representations, ontologization becomes the only way of
mastering the essence of technologies [7].

The activity of many modern specialists in the
field of ontological knowledge engineering varies
from the declarative approach while defining possible
models of concepts ontologies [8] – [11] and to the
implementation of procedural mechanisms for the
automated construction of subject fields ontologies [12].
Most of the existing software ontological design tools
are aimed at constructing an ontological hierarchy of
objects [13], which at best can reflect only the essential
aspect of the components of material nature used in
the implementation of technologies. In this regard,
the usability of such systems, regarding their possible
application to display the structural representation of
technologies, is significantly limited, since the “coverage

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II,28-33

Print ISSN 1691-5402
Online ISSN 2256-070X

http://dx.doi.org/10.17770/etr2019vol2.4064
© 2019 Dmitry Andreev, Sergey Lyokhin, Sergey Verteshev, Lilia Motaylenko.

 Published by Rezekne Academy of Technologies.
This is an open access articleunder the Creative Commons Attribution 4.0 International License.

29

area” of technological knowledge is, among other
things, a set of actions aimed at transforming objects in
conditions of specific production.

This article describes the development of software
that provides effective operation of technological
knowledge through the design of appropriate ontological
representations for the subsequent analysis of production
technologies.

II. functIonalIty and the software development
tools

For the practical application of the developed
method [14], the software was designed to automate
staged algorithmic procedures for constructing unified
decomposition structures (UDC) of formalized
descriptions of technologies.

The developed software has the following
functionality:
•	 Creating a new project, loading a previously saved

project, deleting a project that contains a formalized
description of the technology;

•	 Adding, editing, deleting concepts of technological
actions, located in the nodes of the decomposition
structures of technology (DST);

•	 Determining the initial degree of content formation
of each of the concepts of technological actions;

•	 Managing the number of private concepts within the
UDC based on the formed signs of decomposition;

•	 Automatic relations establishment between fully
formed private concepts within the UDC;

•	 Automatic determining the complete formation of a
holistic concept within the UDC;

•	 Displaying the results of the design using the library
for visualization graphs JGraphX;

•	 Importing and exporting projects in XML format
(eXtensibleMarkupLanguage).

Java Standard Edition (SE) programming platform,
“Eclipse” IDE, Java programming language, PostgreSQL
database management system (DBMS), “Swing” library
for creating a graphical interface and “JGraphX” library
for graphs visualization were chosen to develop the
software. Currently all these development tools are
among the most advanced ones.

Java SE platform is the standard platform Java version
2, designed to create and execute applets and applications
intended for individual use and for use in scales of small
and medium enterprises [15]. It should be noted that this
platform is mainly intended to develop and run desktop
applications that do not require preliminary installation
on a work computer to start working with them. The
advantages of the platform include following features:
ability to run applications under the control of most
modern operating systems, high reliability and security,
portability and high performance.

“Eclipse” IDE is positioned as a free integrated
development environment for modular cross-platform
applications [16]. It is a fully-fledged Java IDE (Integrated
Development Environment) used by a huge community
of software developers and it is the corporate standard
for application development in many organizations. The
main advantage of this design environment is the ability

to connect a variety of extensions (modules, plug-ins,
etc.) that extend the functionality of the environment for
specific practical needs of the developer (for working
with databases, application servers, etc.).

“Java” language is distinguished by effective support
for the object-oriented programming paradigm [17]. Java
programs are translated into a byte code executed by the
Java virtual machine (a program that processes byte code
and sends instructions to the hardware as an interpreter).
The advantage of this method of program execution is
the complete independence of the byte code from the
operating system and hardware, which allows running
Java-applications on any device that has a corresponding
virtual machine. Another important feature of the Java
language is the flexible security system because the
execution of the program is fully controlled by the virtual
machine. Any operations that exceed the established
permissions of the program (an attempt of unauthorized
access to data, connections to another computer, etc.)
cause an immediate interruption. The main features of the
language are automatic memory management, advanced
exception handling, a rich set of I/O filtering tools, a wide
range of standard collections, tools for creating multi-
threaded applications built into the language and unified
access to databases.

PostgreSQL is a free object-relational DBMS [18].
The strengths of PostgreSQL are: support for databases of
virtually unlimited size, powerful and reliable transaction
and replication mechanisms, an extensible system of
embedded programming languages, inheritance and easy
extensibility. It should be noted that the use of the ORM
(Object-Relational Mapping) method was preferable for
working directly with the database. It is a programming
technology that allows associating databases with
concepts of object-oriented programming languages such
as Java, and work with database tables as classes, and with
records in tables as objects. This approach allows avoid
binding an application to a specific database, but instead,
using the application for various database solutions.

“Swing” is a powerful library of graphical components
(buttons, input fields, tables, etc.) for creating an
advanced user interface. “Swing” refers to the Java
Foundation Classes (JFC), which is a set of libraries
for developing graphical shells [19]. “Swing” library
components support specific dynamically-connected
views and behaviours that make it possible to adapt
to the graphical interface of the platform, i.e. to the
component you can dynamically connect another one,
which is specific to the operating system, including
the type and behaviour created by the programmer.
Therefore, applications that use the Swing library look
like native applications for this operating system. Thus,
the positive side of such components is the versatility of
the interface of the created applications on all platforms.

“JGraphX” is a freely distributed library written in
Java and fully compatible with “Swing”, which provides
the mathematical apparatus of the graph theory [20]. This
library is designed to visualize various representations of
entities and their relations, including undirected graphs,
oriented graphs, subgraphs, multigraphs, graphs with

Andreev et al. Development of Software for Design Ontological Representations of Production Technologies

30

parallel arcs, etc. The main advantages of JGraphX
include the fact that the library allows using different
vertex positioning algorithms, as well as creating graphs
based on widely used formats, such as XML-documents.

III. database structure

During software development stage tables that
comprise the required database were designed. The
database schema of the software has the form shown in
“Fig. 1”.

The database has a relational structure, so data on
entities of a formalized description of the technologies are
stored in the form of tables consisting of rows (records)
and columns (fields). The concept of the primary key
(PK), which is a set of fields that uniquely defines a
record was also used in the implementation of the design
process.

The design of the tables that make up the database of
the software was conducted in two stages:

1) Object and connected tables were constructed to
describe real entities and their relations with each other;

2) The decomposition of the obtained tables was
carried out in accordance with the rules of normalization.
As a result, each table began to correspond to three
normal forms: 1NF, 2NF and 3NF [21].

To link most of the tables of the designed database,
one-to-many relations were used, each of which was
represented graphically as a line with symbols at opposite
ends “1” и “∞ ”. In cases where two tables were in the
potential many-to-many relation, in order to preserve the
integrity of the data, link tables were created. Such link
tables mainly consisted of two tables’ records identifiers
only.

 Examples of such kind of tables in the presented
database schema are:

•	 “Links_concepts_preceding_ concepts”;
“Resulting_components_private_ concepts”;

•	 “Links_concepts_source_ components”;
•	 “Links_concepts_invariant_ components”;
•	 “Values_cost_characteristics”.

The database structure of the software is determined
by the following tables.

Table I stores information about projects that contain
formalized descriptions of technologies. Each record in
this table contains information about one project, which
is one formalized description of a certain technology.

table I. projects

Field name Data type Description

project_id (PK) bigint project identifier

project_name character vary-
ing(255) name of project

root_concept_id bigint
identifier of the

root concept of the
DST

Table II stores information about concepts that are
located in the nodes of the DST. Each record in this table
contains information about one of these concepts.

table II. concepts

Field name Data type Description

concept_id (PK) bigint concept identifier

concept_name character vary-
ing(255)

name of the
concept

level integer
the level of the

DST to which the
concept belongs

number integer

an index that
uniquely deter-

mines the place of
the concept in the

DST

own_characteristic character vary-
ing(255)

constant character-
istic peculiar to the

concept

fully_formed boolean

a logical flag
designed to capture

the fact that the
concept is fully

formed

resulting_ compo-
nent_id bigint

identifier of the re-
sulting component

of the concept

holistic_concept_id bigint
identifier of the

holistic concept for
this concept

project_id bigint project identifier

Table III stores information about the components
of concepts that are located in the nodes of the DST. In
this case “components” mean resulting components of
the concepts, and their source components. Each record
in this table contains information about one certain
component.

Fig. 1. The database schema of the software

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II,28-33

31

table III. components

Field name Data type Description

component_id
(PK) bigint component iden-

tifier

component_name character vary-
ing(255)

name of the com-
ponent

decomposable boolean

a logical flag
designed to capture

the fact of the
presentation of a

component of one
concept as a set

of components of
other concepts

project_id bigint project identifier

Table IV stores information about the invariant
components of concepts that are located in the nodes of
the DST. Each record in this table contains information
about one certain invariant component.

table Iv. InvarIant_components

Field name Data type Description

invariant_ compo-
nent_id (PK) bigint identifier of the in-

variant component

invariant_ compo-
nent_name

character vary-
ing(255)

name of the invari-
ant component

invariant_ compo-
nent_type

character vary-
ing(255)

type of invariant
component

project_id bigint project identifier

Table V stores information about the cost
characteristics of the concepts located in the nodes of the
DST. Each record in this table contains information about
one cost characteristic.

table v. cost_characterIstIcs

Field name Data type Description

cost_characteristic
_id (PK) bigint identifier of the

cost characteristic

cost_characteristic

_name
character vary-

ing(255)
name of cost char-

acteristic

project_id bigint project identifier

Table VI stores information about the links of private
concepts of the same level of decomposition, which
is identified with the establishment of the relation of
immediate precedence between them. Each record in
this table contains information about one binary link of
private concepts of the same level of decomposition.
links_concepts_preceding_concepts

Field name Data type Description

concept_id (PK) bigint identifier of the
private concept

preceding_concept

_id (PK)
bigint

identifier of the
preceding private

concept

Table VII stores information about links of private
concepts of the same level of decomposition with their
resulting components. Each record in this table contains
information about one such binary link.

table vI. resultIng_components_prIvate_concepts

Field name Data type Description

concept_id (PK) bigint identifier of the
private concept

resulting_
component

_id (PK)
bigint

identifier of the
resulting compo-
nent of the private

concept

Table VIII stores information about the links of
private concepts of a certain level of decomposition
with their source components. Each record in this table
contains information about one such binary link.

table vII. lInks_concepts_source_components

Field name Data type Description

concept_id (PK) bigint identifier of the
private concept

source_component

_id (PK)
bigint

identifier of the
source component

of the private
concept

Table IX stores information about the links of private
concepts of a certain level of decomposition with their
invariant components. Each record in this table contains
information about one such binary link.

table vIII. lInks_concepts_InvarIant_components

Field name Data type Description

concept_id (PK) bigint identifier of the
private concept

invariant_compo-
nent

_id (PK)
bigint

identifier of the
invariant compo-
nent of the private

concept

Table X stores information about the links of private
concepts of a certain level of decomposition with their
cost characteristics, which allows taking into account
specific numerical values of these cost characteristics.
Each record in this table contains information about
one such binary link additionally with the information
about one numeric value of the corresponding cost
characteristic.

table IX. values_cost_characterIstIcs

Field name Data type Description

concept_id (PK) bigint identifier of the
private concept

cost_characteristic

_id (PK)
bigint

identifier of the
cost characteris-
tic of the private

concept

value_cost_

characteristic
integer

numerical value of
the cost charac-

teristic

the archItecture of the software

In accordance with the tasks that the software solves,
its modular structure and the data flow scheme presented
in “Fig. 2”.

The architecture of the developed software is deter-
mined by the following modules.

1) The user interface module. This module allows

Andreev et al. Development of Software for Design Ontological Representations of Production Technologies

32

user managing the software by means of graphical com-
ponents in the form of buttons located in the right part
of the working window of the program; it allows user to
enter, edit and delete data; getting information about the
structure of the designed formalized description of a cer-
tain technology in two modes of viewing: the main view
of each of the UDC and the general view of the entire
DST.

2) The dialog module. This module is responsible for
displaying auxiliary dialog boxes and for implementing
mechanisms for their program interaction with the main
user form.

Fig. 2. Data flow scheme
3) The module for managing formalized descriptions
of technologies. This module determines the imple-
mentation of the basic algorithms of management
(formation, structuring and processing) by ontological
representations of technologies including all algorithms
that implement the method for constructing formalized
description of technologies.

4) The object management module. This module
allows working with the entities of the ontological rep-
resentations of technologies as with objects, and allows
user to abstract from the structure of storage of the corre-
sponding information in the database.

5) The input/output module. This module is respon-
sible for saving all information about the created or
modified formalized descriptions of technologies in cor-
responding tables of the database. It also allows loading
necessary ontological representations of technologies and
all related information from the database.

6) Export/import module. This module provides ex-
port, i.e. the functionality to save formalized descriptions
of technologies in the widely known and practical format
of the XML markup language. This allows user to work
with the created ontological representations of technolo-
gies in other software products that support this format.
This module also provides import, i.e. downloading, for-
malized descriptions of technologies, which are prepared
either by the same software, but installed on other work-
stations, or by other software products that support XML
documents format. So, this export/import module pro-
vides universal portability of the received design results.

Iv. conclusIon

The developed software “Ontotechnology” [22], im-
plements new possibilities related to the automation of
the process of construction of formalized descriptions of
technologies. It supports the procedure for constructing
ontological representations of technologies by direct par-
ticipation of the expert in determining the initial degree
of content formation of each of the concepts of techno-
logical actions with an explicit indication of their location
in the nodes of the DST. The proposed solution allows:

a) Improving the stage of design-technological prepa-
ration of production in the part of concentration of pro-
cesses of information processing necessary for drawing
up of the current technical documentation for the techno-
logical processes of the enterprise, within one computer
program;

b) Increasing the share of automatic procedures in the
construction of ontological representations of technolo-
gies in comparison with the existing software analogues
of this class of systems;

c) Reducing time costs and the need for labour-in-
tensive manual work to obtain aggregate information on
technologies, as well as creating new opportunities for
rapid obtaining a necessary set of characteristics of the
technologies under consideration;
d) Displaying all stages of construction of formalized
description of technologies in the form of visual graphic
images and providing portability of design results in the
format of XML documents supported by most modern
information systems.

references
[1] J. F. Sowa, „Conceptual graphs as a universal knowledge repre-

sentation,“ International journal computers & mathematics with
applications, vol. 23 (2-5), pp. 75–94, 1992.

[2] F. F. Vyakkerev, V. G. Ivanov, B. I. Lipsky, and B. V. Markov,
Foundations of ontology. Saint-Petersburg: Saint-Petersburg
State University, 1997. (in Russian)

[3] A. F. Tuzovsky, S. V. Chirikov, and V. Z. Yampolsky, Knowledge
management systems (methods and technologies). Tomsk: NTL,
2005. (in Russian)

[4] Т. R. Gruber, „Toward Principles for the design of ontologies
used for knowledge sharing,“ International journal human-com-
puter studies, vol. 43, pp. 907–928, 1992.

[5] I. P. Norenkov, “Intellectual technologies based on ontologies,”
Information technologies, No. 1, pp. 17-23, 2010. (in Russian)

[6] E. S. Kubryakova, V. Z. Demyankov, Yu. G. Pankratz, and L. G.
Luzina, Short dictionary of cognitive terms. Moscow: Philolo-
gy Department of Moscow State University named after M. V.
Lomonosov, 1997. (in Russian)

[7] S. A. Datsyuk, “Ontologization,” 2009. [Online]. Available:
http://lit.lib.ru/d/dacjuk_s_a/text_0030.shtml [Accessed: Feb. 18,
2019]. (in Russian)

[8] T. A. Gavrilova and V. F. Khoroshevsky, Knowledge bases of
intellectual systems. Saint-Petersburg: Piter, 2000. (in Russian)

[9] A. V. Abramov, “Ontology as a method of describing subject ar-
eas,” Bulletin of Moscow city pedagogical University, Informat-
ics and informatization of education, No. 7, pp. 204-206, 2006.
(in Russian)

[10] V. I. Mezhuyev, “Using ontologies as models of subject areas,”
Artificial intelligence, No. 4, pp. 4–11, 2009. (in Russian)

[11] N. S. Konstantinova and O. A. Mitrofanova, “Ontologies as
systems of knowledge storage,” 2008. [Online]. Available: http://
window.edu.ru/resource/795/58795/files/68352e2-st08.pdf [Ac-
cessed: Feb. 18, 2019]. (in Russian)

[12] I. V. Antonov, Method of automated construction of domain
ontology, PhD in Technical Sciences [thesis]. Pskov: PSPI, 2011.

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II,28-33

33

(in Russian)
[13] O. M. Ovdey and G. Yu. Proskudina, “Overview of ontology

engineering tools,” Electronic libraries, vol. 7, issue 4, 2004.
[Online serial]. Available: http://rcdl.ru/doc/2004/paper26.pdf
[Accessed: Feb. 18, 2019]. (in Russian)

[14] D. A. Andreev and M. V. Voronov, “Method for constructing
an ontology of technological actions,” Bulletin of Saratov
State Technical University, No. 3 (67), pp. 160–168, 2012. (in
Russian)

[15] H. Schildt, Eds., Java. Complete guide. Moscow: Williams,
2012. (in Russian)

[16] D. Carlson, Eclipse Distilled. Moscow: Lori, 2008. (in Russian)
[17] B. Eckel, Eds., Thinking in Java. Saint-Petersburg: Piter, 2009.

(in Russian)

[18] G. Smith, PostgreSQL 9.0. High Performance. Birmingham:
Packt Publishing, 2010.

[19] I. A. Portyankin, Eds., Swing. Spectacular user interfaces. Mos-
cow: Lori, 2011. (in Russian)

[20] JGraph user manual, JGraph Ltd., 2009.
[21] S. D. Kuznetsov, Eds., Database basics. Moscow: INTUIT;

BINOM. Knowledge laboratory, 2007. (in Russian)
[22] D. A. Andreev, “Program for automated construction of a

formalized description of the technology of the applied field of
knowledge OntoTechnology,” Certificate of state registration of
computer programs No. 2013660420 the Russian Federation, 5
Nov., 2013. (in Russian)

Andreev et al. Development of Software for Design Ontological Representations of Production Technologies

