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Abstract - In this paper we consider the conservative 
averaging method (CAM) with special spline approximation 
for solving the non-stationary 3-D mass transfer problem. 
The special hyperbolic type spline, which interpolates the 
middle integral values of piece-wise smooth function is used. 
With the help of these splines the initial-boundary value 
problem (IBVP) of mathematical physics in 3-D domain with 
respect to one coordinate is reduced to problems for system 
of equations in 2-D domain. This procedure allows reduce 
also the 2-D problem to a 1-D problem and thus the solution 
of the approximated problem can be obtained analytically. 
The accuracy of the approximated solution for the special 1-
D IBVP is compared with the exact solution of the studied 
problem obtained with the Fourier series method. The 
numerical solution is compared with the spline solution. The 
above-mentioned method has extensive physical 
applications, related to mass and heat transfer problems in 
3-D domains. 

Keywords - conservative averaging method, 3-D mass transfer 
problem, hyperbolic type splines, analytical solution 
 

INTRODUCTION 
The task of sufficient accuracy numerical simulation of 
quickly solution 3-D problems for mathematical physics 
is important in known areas of the applied sciences, for 
example, the calculation of the metal concentration in peat 
blocks. The metals distribution in peat layer’s blocks have 
been  modelled in [3], [4].  

A.Buikis had considered the conservative averaging 
method (CAM) with the integral parabolic type splines for 
mathematical simulation of the mass transfer processes in 
multilayered underground systems [1].  
The conservative averaging method has been applied also 
in a technical sphere, modelling the heat distribution in the 
3-D area of the automotive fuse [5]. Cylindrical 
mathematical model of automotive fuse due to 
characterize the heat-up process in the fuse is described by 
partial differential equations of the transient heat 
conduction. CAM with integral parabolic type splines has 
been used to get the approximated solution of studied 
problem with analytical formulas [6]. 
In the present paper CAM using the special hyperbolic 
type splines is developed. With the help of these splines 
the IBVP in 3-D domain with respect to one coordinate is 
reduced to 2-D and 1-D problems. These splines in every 
direction of averaging contain parameters, where being 
based on CAM it can be chosen so that the error of the 
solution is decreasing. 
The accuracy of the approximated solution for the special 
1-D problem is compared with the exact solution of the 
studied problem obtained by the Fourier series method. 
The best values of the parameters (for minimizing the 
error of the solution) can be obtained with the different 
orientation of the averaging method, that is, applying the 
averaging method in the x  and y  directions respectively. 
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In the limit case when the hyperbolic type spline 
parameters tend to zero we get the integral parabolic 
spline, developed from A. Buikis [1]. 

MATERIALS AND METHODS 

1.THE MATHEMATICAL MODEL 
We will find the distribution of concentrations ),,( zyxc  
at the point Ω∈),,( zyx  and at the time t  from the 
following 3-D initial-boundary value mass transfer 
problem for partial differential equation (PDE) (1): 
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where zyx DDD ,,  are the constant heat diffusion 

coefficients, zyx ααα ,,  are the constant mass transfer 
coefficients in the 3 kind boundary conditions, 

axayaz ccc ,,  are the given concentration on the 

boundaries, ft  is the final time, ),,(0 zyxc  is the given 
initial concentration. 

2. THE CAM WITH THE HYPERBOLIC TYPE INTEGRAL 
SPLINE APPROXIMATION IN Z-DIRECTION FOR THE 3-D 

PROBLEM 
For solving IBVP (1) for every 0>t  using CAM we 
consider the following hyperbolic type spline 
approximation with respect to z -direction 

21 ),,(),,(),,(),,,( zzzzz ftyxeftyxmtyxctzyxc ++=  
with the following two fixed hyperbolic functions 

21, zz ff  and parameter za : 
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1 ),,,()(),,(   is the averaged 

value, 0>za  is the initial parameter (unknown). It can be 

seen if parameter za  tends to zero then in the limit case 
we get the integral parabolic spline from A. Buikis [1]. 
The unknown functions zz em ,  are determined from 
boundary conditions of (1) by zLzz == ,0 : 

0=− zzzz ekmd , zzz epm = , zzz dkp /= , 
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Therefore zzazz gcce /)( −= , 

zzzzzzz DkLpbg α/)2(5.0 ++= . 
Now the initial-boundary value 2-D problem is in 
following form (2): 
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where zzzzz gLkDa /)2(2
0 = , 

∫−= zL
zz dzzyxcLyxc

0
1 ),,(0)(),(0 . 

3. THE CAM FOR CORRESPONDING SPECIAL 1-D INITIAL-
BOUNDARY VALUE PROBLEM 

For comparison, we consider the corresponding 1-D 
problem with the following parameters 

,00,10,1),,(,0,79.1 7 ==∝≈===== cLtzccDDa zzyxz α

200,1,01.0 === fazz tcD . 
Then the analytical solution we can obtaine from the 
following Fourier series [2]: 
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From (2) we have following initial-value problem for 
ODE: 
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where )()( tctuz z= .  
The averaged spline solution is in following form 

( ))exp(1)( 2
0 tactuz zaz −−=  and 

21 )()()(),( zzzzz fteftmtctzUs ++= . 
The numerical results with Matlab are obtained by 20∝≈  
in the uniform grid 

,/,,0, zzzzzm NLhNmhmz ==⋅=  

.20,/,,0, ====⋅= tztftttk NNNthNkhkt  
In the following figures (Fig.1.-Fig. 4.) there are 
represented the solutions ),,(),,(),,( tzUvtzUstzU  

)(tuz . 

 
Fig. 1. Fourier series solution ),( tzU .  

 

 
Fig. 2. Spline solution ),( tzUs .  

 

 
Fig. 3. Comparison the averaged solutions )(tuz and )(tUv .  

 

 
Fig. 4. Comparison the solutions ),0( tU and ),0( tUs .  

 

4. THE CAM IN Y-DIRECTION FOR THE 2-D PROBLEM  
 

Using averaged method with respect to y we apply 
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0
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For the following hyperbolic type spline approximation 
21 ),(),(),(),,( yyyyyz ftxeftxmtxctyxc ++= , 
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Similarly, we determine the unknown functions zz em ,  
from boundary conditions by zLzz == ,0  
and yyayy gcce /)( −= , 
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The initial-boundary value 1-D problem is in the 
following form (4): 
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5. THE CAM IN X-DIRECTION FOR THE 1-D PROBLEM 
It is possible proceed an averaging also in x - direction 
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0
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For the following hyperbolic type spline approximation 
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we have  
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From the problem (4) follows the initial problem of 
linear ODEs  
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The solution of this problem can be obtained with the 
classical methods. 
For 00 =c  we have, ( ))exp(1)/()( 000 tBBAtcx −−= , 

where axxazzayy cacacaA 2
0

2
0

2
00 ++= ,   

2
0

2
0

2
00 xzy aaaB ++= . In the stationary case we have

00 / BAcx = . 
For fixed ftt =  follows: 
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zfzazfz gtyxcctyxe /)),,((),,( −= , 
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Taking into account, 0,0,0 === zyx , we get the 
following formulas: 

21 )()()(),0( xxxxxy fteftmtctc ++= , 
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RESULTS AND DISCUSSION 
We use uniform grid in the space  
( ) :)1()1()1( +×+×+ KMN  
{ },)1(,)1(,)1(),,,( zkxjyikij hkzhjxhiyzyx −=−=−=

,1,1,1,1,1,1 +=+=+= KkNjMi  

zzxxyy LhKLhNLhM =⋅=⋅=⋅ ,, .  

For the time ],0[ ftt∈  we use the moments 

tn Nnnt ,0, == τ , ft tN =⋅τ . 
The numerical results are obtained for  

1,3,10,103 34 ====⋅== −−
yxzzyx LLLDDD , 

710=∝≈== yxz ααα , 20==== tNKNM , 
For determining the parameter za in the stationary case 
we do the iteration process with applying also the CAM 

first in y-direction and then in z-direction. 
In y-direction we have 

21 ),(),(),(),,( yyyyy fzxefzxmzxczyxc ++= , where 

∫−= yL
yy dyzyxcLzxc

0
1 ),,()(),( is the averaged value and 

yzy Daa /10= is the previous value. In z-directon 

21 )()()(),( zzzzzy fxefxmxczxc ++= where 
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∫−= zL
yzz dzzxcLxc

0
1 ),()()(  and zyz Daa /10=  is the 

new value for parameter za . We can obtain quickly 
conversion iteration process (with 5 iteration) for 
obtaining the parameters xyz aaa ,,  with initial value 

1=za . We have the stationary solution with 

200,1 == ftτ  and with the maximal error 410− . The 
maximal error between the 1-D exact problem and the 
spline solutions is 0.01334. The results of averaged 
solutions for 200=ft  and depending on x  and t  we 
can see in (Fig. 5., Fig. 6.) 

 
Fig. 5. The averaged solution ),( fy txc .  

 

 
Fig. 6. The averaged solutions ),0,0( tcz and ),0,0,0( tc .  

 
 
 

CONCLUSIONS 
1. In the present paper the conservative averaging 

method with special spline approximation is applied 
for solving the3-D non-stationary initial-boundary 
value (IBV) mass transfer problem. 

2. This problem is reduced to 2-D and 1-D IBV problems 
using the integral hyperbolic type splines with fixed 
parameters. 

3. Different orientation of the averaging allows you to 
determine the parameters of the spline function in such 
a way that the calculation error is minimal. 

4. The solution of the special non-stationary 1-D IBV 
problem is obtained numerically using Fourier series 
method. This numerical solution is compared with the 
splaine function’s solution and the maximal error is 

410− . 
5. For testing the conservative averaging method also the 

exact solution of the 1-D IBV problem is found and the 
maximal error between the mentioned problem and the 
splaine function’s solution, in this case, is 0.01334. 
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