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Abstract - The article is devoted to the analysis of the 
available mathematical models in epidemiology and the 
possibility of their modification. We note that the situation 
with the COVID-19 virus pandemic is characterized by 
several features not comprehensively studied in the existing 
models. For a rational response to existing challenges, it is 
necessary to have a predictive and analytical apparatus in 
the complex (national and regional scale) mathematical 
models with a planning horizon of 2 years (the expected 
period of mass production of vaccines). The article discusses 
the existing approaches to predicting the spread of the 
COVID-19 virus in Russia based on mathematical models of 
epidemics. The possibilities and limitations of the proposed 
approaches are considered. In the conditions of the Russian 
Federation, transport connectivity at the interregional and 
intraregional levels plays an important role, and for 
megalopolises - transport flows within large agglomerations 
and the age structure of the population. In contrast to 
previous pandemics and epidemics, public policy plays a 
significant role. The approach, which consist in building 
multi-agent models that combine the advantages of 
compartment models and models based on the Monte Carlo 
method (individually oriented) is proposed by the authors. It 
is planned to use compartment models to assess the dynamics 
of the process and individually-oriented models - at the level 
of individual territories and districts. 

Keywords - prediction, predictive models, viral diseases, 
mathematical model. 

I. INTRODUCTION 
The SARS-COVID19 virus pandemic is an object of 

close study by both epidemiologists and specialists in data 
analysis and numerical modeling, since the high degree of 
informatization of developed countries allows to obtain 
open statistical information practically on the day of its 
registration. 

An analysis of the spread of viral infections is 
important both from a scientific point of view and from a 
practical viewpoint, since the volume of sick people in the 
population determines the burden on the health care 
system, makes it possible to estimate the required number 
of beds in hospitals, the amount of drugs consumed, the 
number of ventilators and medical personnel, the nature 
and severity of the applied restrictive measures. 

Mathematical modeling of these processes has been 
carried out since the 20s of the XX century, however, a 
modern highly mobile society, a developed healthcare 
system, the specificity of the COVID-19 virus as such sets 
the task of developing and verifying, if not completely new 
mathematical models in a significant way corrected model. 

Thus, the work is relevant, and the proposed 
approaches can be used for prognostic by government 
agencies, the leadership of medical institutions and the 
business community. 
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II. MATERIALS AND METHODS 

A. Base model 

 
Fig. 1. Base SEIR model with populations dynamic (where S - 

susceptible, E - exposed, I- infectious, R - recovered), D – dead part of 
population, measured in a natual values). 

Consider as a reference the SEIR model proposed by 
[1] and widely used at present [2, 3]. This is a modification 
that takes into account natural and additional mortality and 
population growth. 

The population at each time is considered to consist of 
compartments, namely S (susceptible), E (exposed), I 
(infectious), R (recovered), and D (dead). S is the part of 
the population that can be infected, E is the carriers of 
infection in the incubation period, I is infected, R is cured. 
Deaths due to illness and natural attrition from all groups 
(D) are also included. The probability of transition from 
one compartment to another due to infection is given by 
coefficients (β, ε, γ, α), and the transition rules are 
represented by continuous lines. The natural loss of 
population is assumed to be the same and is given a 
coefficient μ, and the birth rate is λ. Note that the total 
number of living people in the population is N=S+E+I+R. 

The model presented is deterministic and is described 
by the following system of differential equations (1): 
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  (1) 

The first equation describes the probability of infection 
of immunocompromised individuals depending on the 
frequency of contact with the infected (SI) at the 
transmission rate β. Infected individuals become carriers of 
E infection, which in turn, become infected with I with a 
coefficient ε. Those infected can recover and become R, or 
die (D) with coefficients γ, α respectively.  

A natural decrease with a μ coefficient is derived from 
all compounds except D and R for obvious reasons. The 
birth rate is proportional to the number of living population 
with a coefficient λ. We will then use these designations 
without further comment. 

Everywhere S, E, I, R, D are functions of time (in days), 
and their initial values are given with the index 0 (S(0), 
E(0), I(0), R(0), D(0)). Several relative parameters are also 

traditionally introduced, namely: 𝜇𝜇_0 - basic reproduction 
rate of virus, n_id - incubation period, 𝛽𝛽 = 𝜇𝜇_0/𝑛𝑛_𝑖𝑖𝑖𝑖  - 
viral propagation rate, γ - withdrawal rate from infected 
state (see detailed description, e.g. [4-6]). 

Option b) takes into account natural fertility and 
mortality, which is relevant for long-term epidemics with a 
cyclical pattern of about a year or more. The considered 
systems of differential equations are represented in the 
form of models Simulink (see https://github.com/Alex-
Samarkin/Rezekne2021COVID). 

B. MATLAB realization of the base model 
MATLAB and Simulink are widely used for simulation 

modelling due to the high prototyping speed, an 
exceptionally convenient visual editor, stable and well-
documented numerical modeling algorithms. Then 
applied: Runge-Kutte45 solver, variable integration step, 
relative error 1e-6. The consolidated block diagram of the 
model is presented in the Fig. 2. There is omitted 
documentation and info blocks, same as block of visual 
representation of results. 

 
Fig. 2. Realisation of a base model SEIRD (where marked blocks is:  a 

– initial value setup, b – calculator of population size, c – setup of 
coefficients, D-H – SEIRD calulators). 

The following is the most important coefficient 
calculation block for further modelling. 

 
Fig. 3. Calculation of coefficients block (where a – transmission rate 

coefficient, b,c,d,e,f,g - 𝛽𝛽, 𝛾𝛾,𝛿𝛿, 𝜀𝜀, 𝜇𝜇, 𝜈𝜈 ). 

C. Criticism of the base model 
There are several assumptions behind the integrated 

models: the compartments are homogeneous, the external 
effects have an instantaneous effect on the whole 
compartment, which obviously does not work under real-
world conditions. 
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The stochastic nature of the processes (e.g., the 
likelihood of infection) is ignored. 

It ignores not only the geographical extent of compacts, 
but also their length over time. Here, time refers to both the 
time of the simulation, for example, the year, and the time 
of the simulated processes: the time of the infected in the 
incubation period, the time of the disease. It is obvious, for 
example, that the probability of recovering or dying 
increases at the end of the disease term (𝑛𝑛_𝑛𝑛𝑖𝑖). 

Population responses and government action to halt the 
epidemic, and the socio-economic impact of the epidemic 
and the response to it, have been ignored, creating a system 
with multiple feedback loops. This makes it difficult to 
identify model parameters. 

The way the model is described also has a major impact 
on the modelling procedures. For example, a system-based 
description of common computers allows the use of 
efficient computer mathematics systems. A description in 
the form of algorithms of transition from one complex to 
another - modeling in one programming language, multi-
agent and individualized models may require 
implementation in hardware and software. 

D. Ways to overcome the shortcomings of the 
standard model 

One of the main drawbacks of the model is that its 
results are deterministic. It arises because of the 
deterministic nature of model parameters and deterministic 
rules of transition from one state to another. It can be 
shown ([7, pp. 384-388]) that transitions from one 
compartment to another in a stochastic interpretation of this 
process are subject to the law of exponential distribution. 
The same approach can be used in the analysis of time-long 
compounds (such as the E, I base model). 

The SEIR model is well developed in the modelling of 
most viral infections [8, 9], so the authors have chosen an 
evolutionary modernization. The main idea is to introduce 
additional compartments into the model (for example, by 
geographical principle or by age groups). It also seems 
logical to model the process of the disease, as a transition 
from a compound with a period of illness i to a complex 
with a period of illness i+1. 

Models based on the time distribution of patient groups 
are known, as the Erlang-SEIR model (Fig. 4). 

 

 
Fig. 4. The Erlang scheme in the incubation E and infeected I models. 

From the authors' point of view (without detracting 
from the value of the approach itself), introducing such 
complexity on relatively small samples does not have a 
significant effect due to the effect of large numbers, 

nevertheless the reader can find their implementation in 
ErlangSEIR1 - ErlangSEIR3_4 repository. 

However, even the more complicated model [10] is 
actually deterministic. As the basis of her work are 
coefficients, the authors modelled their fluctuations over 
time, taking into account both cyclical temporary processes 
(daily, weekly, monthly, quarterly and annual) and purely 
random [11]. 

The determining parameter of the model is the transport 
factor, which measures the average number of new infected 
persons in a population made by one infected person per 
day. 

At a value above 1, the epidemic increases, otherwise 
it fades. The coefficient is integral to an entire population 
and may vary significantly from one population group to 
another and is currently calculated in retrospect from the 
results of day-to-day infection statistics. 

The diagram on a Fig. 5 shows the correction block for 
the reference value of the transport coefficient. The 
amendments are additive. 

 
Fig. 5. Block diagram for generating a transport coefficient variable 

where a) is a base value, b) is a periodic oscillation, b) is a purely 
random component. 

Similarly (the article does not show) the random 
variation of other model coefficients is considered. 

The pandemic is accompanied by governmental action, 
and more or less significant effects of the containment 
situation. These effects may occur in different ways, but 
the main interest is their influence on the transport 
coefficient. 

A typical response of different States to a pandemic 
(prior to mass vaccination) is the imposition of restrictive 
measures such as: 

• wearing masks; 
• restriction of movement; 
• introduction of social distance standards. 
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It is easy to see they are aimed at lowering the transport 
coefficient and are multiplicative. The multiplicative 
corrections modelling unit is presented in the Fig. 6. 

 
Fig. 6. Multiplicative adjusters of the transport coefficient. Here: a) - 

no lockdown, b) - three-step restrictive measures. 

Figure 6. b shows three stages of lockdown (Pskov 
region in 2020, reconstructed by authors): 

• 80 days – no reaction or little effective action;  
• 80-130 – hard lock-down with strict control;  
• 130-180 – soft lock-down (some restrictions 

are lifted);  
• 180-365 – ineffective lock-down (restrictions 

are formally observed, with little or no 
implementation by private businesses and the 
public). 

As seen below, a step-by-step implementation of the 
lockdown may cause a second wave of the pandemic (but 
is not necessarily the cause of the wave). 

At the regional level, in Pskov oblast it is possible not 
to consider the geographical length factor. At the Russian 
Federation level, however, this may be a determining factor 
in the relatively mild course of a pandemic.  

Of particular interest is the age structure of the region’s 
population. According to the authors, different age groups 
may have different contacts with the rest of the population, 
experience the disease differently and show different 
mortality rates. Based on data from Rosstat, the population 
of the Russian Federation and the Pskov region has an 
established age structure. We will present it in three age 
groups: children under the age of 15, the working-age 
population and pensioners over the age of 55. 

We note that the first group (children) are almost 
asymptomatic but have the highest transport activity. Thus, 
children have a high transmission rate, but a low mortality 
rate. Note also this group is poorly covered by testing 
procedures. The able-bodied population has typical 
statistical indicators - base transport coefficient about 2, 
with moderate mortality (excluding persons at risk). As 
with children, this group has weekly and daily rhythms 
because of the need to go to work. The non-working part 
of population has the highest mortality, but this is 
combined with low transport activity. 
 

TABLE 1 AGED GROUPS 

 
Proportion of aged groups (%) 

Age 0-15 Age 15-55 Age >55 

Value 20% 53% 27 

 

An additional Simulink block library (SEIR_Lib file) 
was developed to implement the three-year model. The 
consolidated block diagram of the model is presented in 
Fig. 7. 

 
Fig. 7. Model of epidemics by age structure of population. Here: a) - 

general population structure, b) - age separation blocks, c) - age-
specific agents - private SEIR models. 

III. RESULTS AND DISCUSSION 
The results of the simulation can be divided into groups 

– verifying correctness of the calculations (not mentioned 
here) obtained in the calculation of deterministic models, 
by models considering random factors and rhythms of the 
transport coefficient, Agency models that consider the age 
structure of the population. 

The results are built by MATLAB using Scope blocks 
part of Simulink.  

 
Fig. 8. Classical SEIR model, fully determined by coefficients. 

The results on Fig. 8 reflect the classic course of the 
epidemic – the increasing wave of infections, the formation 
of natural immunity and the end of the epidemic [13]. 

By many sources and as we have seen the model does 
not explain the emergence of a second wave of pandemics 
[14]. The figures also correlate with the dates of the first 
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wave of the pandemic in the Russian Federation and Pskov 
region, but are several times higher than the statistics. 

The authors consider that: 1) The geographical extent 
of the State is significant, as in fact the first wave of the 
pandemic affected 2-3 major cities; 2) The population 
testing strategy affects only populations at risk, for which 
a potentially dangerous course of disease is possible [16]. 
The multiplicative effect of these factors can explain the 
deviation of the calculated results from the observed ones 
[15]. 

 

 
Fig. 9. Erlang-SEIR model considering fluctuations in transport 

coefficient values (120 days of a pandemic are simulated) 

Sinusoidal rhythms that change the transport 
coefficient cause characteristic sawdust oscillations on the 
curves of the infected and the recovered. This result allows 
to simulate similar fluctuations, measured in the count of 
cured and infected.  

However, these fluctuations do not result in a 
continuous fluctuation in the number of infected persons 
and therefore do not explain the waves of the pandemic. 

 
a) Count of Infected by day (from 
https://datalens.yandex/Россия) 

 
b) state restriction rate (reconstructed by authors) 

 
c) Count of infected by day - modeled data (from 

ErlangSEIRv3_2) 
Fig. 10. Comparation of real-world data and modelled effect of 

restriction 

The model demonstrates the emergence of a second 
pandemic due to the relaxation of restrictive measures by 
the State. The timing is relative good, but there is still a 
significant difference in the number of reported cases. The 
reason for the discrepancy is explained above. 

 

 
Fig. 11. The bimodal distribution of those infected by pandemic days is 

modelled considering the behaviour of three age groups, 
fluctuations in transport coefficient values and excluding 

restrictive measures (120 days of simulation). 

IV. CONCLUSIONS 
The presented paper demonstrates a wide range of 

results that can be obtained using several modified SEER 
models. The main directions of the modification are: 

• The transition from constant coefficients in 
the system of differential equations (1) to 
certain functions, such as the sum of harmonic 
oscillations with periods corresponding to the 
characteristic rhythms of the population - 
from day to year); 

• Introduction of elements of randomness 
(additive noise to coefficient values; 

• Consideration of State and social control 
effects (with a multiplicative amendment 
taking into account the influence of lockdown 
on the transport factor, see also [17]); 

• The formation of agent models in which the 
selected clusters interact with each other, and 
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the behavior of the cluster continues to be 
described by SEER models (the example is 
given of the division of the population into 
three clusters by age groups, [18, 19]). 

In the continuation of the present work, geographical 
connectivity between the region and the State must be 
considered. The influence of mass vaccination processes 
should also be considered. The authors also propose to add 
economics-related models to the purely medical aspects. 
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