

ISSN 1691-5402

Environment. Technology. Resources

 Proceedings of the 9th International Scientific and Practical Conference. Volume 1I

© Rēzeknes Augstskola, Rēzekne, RA Izdevniecība, 2013

40

Path Planning Usage for Autonomous Agents

Edvards Valbahs, Peter Grabusts
Rezekne Higher Educational Institution, Faculty of Engineering, Atbrivoshanas alley 76,

Rezekne, LV-4601, Latvia.

Abstract. In order to achieve the wide range of the robotic application it is necessary to provide iterative motions

among points of the goals. For instance, in the industry mobile robots can replace any components between a

storehouse and an assembly department. Ammunition replacement is widely used in military services. Working place

is possible in ports, airports, waste site and etc. Mobile agents can be used for monitoring if it is necessary to observe

control points in the secret place. The paper deals with path planning programme for mobile robots. The aim of the

research paper is to analyse motion-planning algorithms that contain the design of modelling programme. The

programme is needed as environment modelling to obtain the simulation data. The simulation data give the possibility

to conduct the wide analyses for selected algorithm. Analysis means the simulation data interpretation and

comparison with other data obtained using the motion-planning. The results of the careful analysis were considered

for optimal path planning algorithms. The experimental evidence was proposed to demonstrate the effectiveness of the

algorithm for steady covered space. The results described in this work can be extended in a number of directions, and

applied to other algorithms.

Keywords – robotic, Simulated Annealing, path planning.

I INTRODUCTION

The article is connected to the travelling salesman

problem (TSP), but with some exceptions and

conditions. In the case when the TSP is envisaged the

following approximate path planning algorithms are

used [2, 3, 4]:

 The closest neighbour algorithm;

 Simulated Annealing (SA);

 Genetic Algorithm (GA);

 Ant colony optimization.

The closest neighbour approach is the simplest and

straightforward TSP one [10]. The way to this

approach to always visit the closest city. The

polynomial complexity of the approach is O(n
2
). The

algorithm is relatively simple:

1 – Choose a random city;

2 – Find out the nearest city unvisited and visit it;

3 – Are there any unvisited cities left? If yes, repeat

step 2;

4 – Return to the first city.

SA is successfully used and adapted to get an

approximate solutions for the TSP [10]. SA is

basically a randomized local search algorithm similar

to Tabu Search but do not allow path exchange that

deteriorates the solution. The polynomial complexity

of the approach is O(n
2
) accordingly.

Fig. 1. Pseudocode for SA

The SA method [1, 5, 16] is widely used in applied

science (Fig. 1). The well-known traveling salesman

problem has effectively solved by means of this

method. For instance, the arrangement of many circuit

elements on a silicon substrate is considerably

improved to reduce interference among the elements

[15, 18].

GA conducts in a way similar to the nature [3]. A

basic GA starts working with a randomly generated

population of potential solution. The candidates are

then mated to produce offspring and only some of

them go through a mutating process. Each candidate

has an optimal value demonstrating us how go it is.

Choosing the most optimal candidates for mating and

mutation the overall optimality of the candidate

solutions increases. Using GA to the TSP involves

implementing a crossover procedure, a measure of

optimality and mutation as well. Optimality of the

solution is a length of the solution.

Ant colony optimization is the algorithm that is

inspired by the nature [9]. It is based on ant colony

Valbahs E., Grabusts P. PATH PLANNING USAGE FOR AUTONOMOUS AGENTS

41

moving behaviour. Good results can be achieved by

means of the algorithm but not for complex problems.

We managed to use SA algorithm rather

successfully in our previous work [17] taking into

account the specific side of this work (it will be

discussed in detail further). Therefore, it is necessary

to discuss some principles of SA realization in detail.

In order to calculate the total path it is necessary to

know the shortest route among all the cities. As we do

not know the distance, we must apply one of the

algorithms to define the shortest route among all the

cities. It is Dijkstra's algorithm [14] that gives the

possibility to get the shortest path tree. The

polynomial complexity of the Dijkstra's algorithm is

O(n
2
).

II GOALS

The aim of the research paper is to analyze motion-

planning algorithms that contain the design of

modelling programme. The programme is needed as

environment modelling to obtain the simulation data.

The simulation data give the possibility to conduct the

wide analyses for selected algorithm. Analysis means

the simulation data interpretation and comparison with

other data obtained using the motion-planning.

The use in practice and the necessity of it is greatly

connected to optimal algorithm and methodological

work out for autonomous agents that move in the

space and are able to plan route on their own [6, 7, 8,

11, 12, 13]. One of such agent-samples exiting in our

everyday life is autonomous vacuum cleaner.

Autonomous vacuum cleaners do not usually use the

motion-planning algorithm. They are based on some

simple algorithms, for example cleaning in a spiral,

crossing the premises avoiding the walls and their

moving is casual after touching the walls. The

philosophy of this design was offered by the scientists

of Massachusetts Institute of Technology. Agents

must behave as insects having primitive controlling

devices in accordance to the environment. As a result,

though an autonomous vacuum cleaner is very

effective in cleaning premises, it is required much

more time as compared with work made by a human.

There is a drawback, the autonomous vacuum cleans

some spaces many times but other spaces only once.

The use of motion-planning algorithms can raise the

effectiveness of an autonomous vacuum cleaner.

III ASSUMPTIONS

In order to fulfill the aim of the research paper the

following conditions are introduced for:

 premises where an object moves;

 robot (or object) moves around the premises;

 path the robot moves on in the premises.

The premises are presented as two-dimensional plane.

The plane of premises is equally divided into the cells.

The cell dimensions are equal to agent dimension that

moves in the premises. The space can be represented

as a graph with two kinds of edges (see Fig. 2).

Horizontal and vertical edges are marked with

unbroken lines they are of similar length, but others

are longer and marked with dash lines. It is linked

with agent movement possibilities.

Fig. 2. The example of the graph and 3 x 3 space

The object moves only one cell forward and back

i.e. during one motion the object can move to the one

cell from empty eight ones (eight cells around one

cell) paying attention to that cell is not occupied by

the obstacle but if it is occupied, the graph will not

have the relevant vertex (see Fig. 3).

Fig. 3. The example of agent’s motion (where vi,j is relevant

vertex)

As opposed to classical TSP we take a number of

additional rules and it means that the agent can cross

the one the same cell several times in succession (it

must cross any cell one time obligatory). Thus, the

agent’s initial vertex does not coincide with its final

vertex of total route.

In this research paper both algorithms were

compared practically using and combining different

placement of obstacles in the unchangeable two-

dimensional space. All the results were obtained on

one and the same computer (2.66 GHz processor and

2GB RAM), operating systems (Ubuntu 12.04.1 LST

Linux were used). The following information was

collected about:

 the number of covering for each cell;

 the time which was necessary for both

algorithms to plan the route.

The given illustrations (see Fig. 4) show coverage

density (it is an example that was obtained in our

previous work [17]).

Valbahs E., Grabusts P. PATH PLANNING USAGE FOR AUTONOMOUS AGENTS

42

Fig. 4. Density scale (white - uncovered; black - covered the

most)

Fig. 5. Coverage density for the space without obstacles for SA

Fig. 6. Coverage density with the obstacle consisting of 64 cells

(the obstacle is in the middle of the premises) for SA

Fig. 7. Coverage density with the obstacle consisting of 144

cells (the obstacle is in the middle of the premises) for SA

Fig. 8. Coverage density with the 12 random obstacles for SA

Fig. 9. Coverage density with another set of the 12 random

obstacles for SA

Valbahs E., Grabusts P. PATH PLANNING USAGE FOR AUTONOMOUS AGENTS

43

Fig. 10. Coverage density with the obstacle consisting of 12 cells

(the obstacle is in the middle of the premises) for SA

Fig. 11. Coverage density with the obstacle consisting of 12 cells

for SA

The density scale (see Fig. 4) is the same for all

coverage densities. Coverage density shows how often

the robot covers each cell.

IV RESULTS

Taking into account the fact that the distance among

all the vertexes (cities) are unknown in the beginning,

it is necessary to define the shortest paths among those

vertexes mentioned above. Dijkstra's algorithm can be

used but increasing the measures of the premises, the

time is proportionally increases accordingly that is

necessary for evaluating path tree. Therefore, it is

needed to simplify the calculation of the shortest path,

which is possible, provided the peculiarities and

nuances of the task are taken into consideration. In

addition, the empty premises should be observed. If all

the mentioned above remains valid, the simple

algorithm can be worked out to define the shortest

paths.

Let us consider the agent’s general moving paths. If

there are no vertexes between the current initial and

goal vertexes, the agent can move only to eight

possible positions (cells) depending on goal vertex

(see Fig. 3). Admitting that first vertex index i defines

the vertical position and the second vertex j defines

the horizontal position we can draw a line either

horizontally or vertically. And one of the vertexes will

have the index with common value (see Fig. 12).

Fig. 12. The example of agent moving horizontally (where i

index value is common for both vertexes)

Another situation can be seen if the current initial

and goal vertexes are neither on the horizontal nor

vertical lines (see Fig. 13-15).

Fig. 13. Three examples of agent moving (where A, B and C are

sections among the vertexes): agent moves from v0,2 to v3,0 crossing

v1,2

Valbahs E., Grabusts P. PATH PLANNING USAGE FOR AUTONOMOUS AGENTS

44

Fig. 14. Three examples of agent moving (where A, B and C are
sections among the vertexes): agent moves from v0,2 to v4,0 crossing

v2,2

Fig. 15. Three examples of agent moving (where A, B and C are

sections among the vertexes agent moves from v0,3 to v4,0 crossing

v1,3)

All cases of Fig. 13-15 have common

characteristics that unites them. The shortest path from

initial vertex to goal vertex is section C but for the

agent this path is unavailable because of current task

conditions and peculiarities. These cases can be

described by the right-angled triangle where C is a

side of the triangle. In addition, side B is longer than

side A. One of the shortest paths among the relevant

(corresponding) vertexes:

 the agent moves along the longest side B of the

right-angled triangle until the gap between the

covered path and side B is equal to side A;

 if gap between the covered path and side B is

equal to side A, then the agent moves along the

angle allowed (along the section D) to the goal

vertex (let us mark that this action corresponds to

the case when side B is equal to side A i.e. the

right-angled triangle is the isosceles triangle, too

(see Fig. 13) in case initial vertex is v1,2, 4, (see

Fig. 14) in case initial vertex is v2,2 and (see Fig.

15) in case initial vertex is v1,3)).

We can follow that the path is longer than optimal

side C. And it can be calculated by the use of

following formulae: L = B-A+2
0.5

*A, where L is the

length of the path from initial vertex to goal vertex.

By turn, C can be calculated from C = (A
2
+B

2
)

0.5
. It is

possible to calculate how match percent L is longer

than C (if L is equal to 100 %), then the final result is

equal to P=((L-C)*100)/L. Our goal premises are 100

x 100 cells. The value of P is reflected with contour

line for the given premises depending on A and B (see

Fig. 16).

Fig. 16. P value depending on B and A, if A > 1 and B > A

It is possible to calculate maximum P value for 100

x 100 cells big premises (see Fig. 16) that is equal to

7.61 %. The method/algorithm mentioned was applied

instead of Dijkstra's algorithm to calculate total path

or covering of 100 x 100 cells big premises and it is

obstacles free (see Fig. 17).

Valbahs E., Grabusts P. PATH PLANNING USAGE FOR AUTONOMOUS AGENTS

45

Fig. 17. The density of covering for 100 x 100 cells big premises
(it is obstacles free)

Density of covering changes from 1 up to 40 (there

are the cells which were covered only once and there

are the cells covered maximum 40 times). Totally, the

agent performed 192666 steps in order to cross each

cell of the premises.

V CONCLUSION

It can be concluded that the algorithm offered is

rather simple and it replaced Dijkstra's algorithm

effectively according to the task. The algorithm allows

decreasing the time of calculation, which is necessary

to define the shortest route among graph vertexes.

The shortest path can be defined in a simple way

(even in such cases mentioned in Fig. 13-15),

provided that it is necessary to know the gap between

the indexes of initial and goal vertexes. For instance,

if initial vertex is vi1,j1 and goal vertex is vi2,j2, the first

gap is ∆1=|i1-i2| and the second gap is ∆2=|j1-j2|. As to

the next step, it is needed to calculate the biggest gap

between both the gaps. The shortest path is equal to

the biggest gap. For instance, Fig. 13 reflects the

shortest path which occupies 4 cells, but in other cases

(see Fig. 14-15) it is 5 cells big.

It must be marked that total path can be a bit longer

it is connected to the specific task which was

envisaged in the chapters “Assumptions” and

“Results” in detail. The worst case can be evaluated

theoretically for the premises of 100 x 100 cells. If we

take into consideration that the total route will consist

of path pieces, which are longer than 7.61 % in

comparison with C value (see Fig. 16), the total path

will be longer than optimal 7.61 % (actually, it is the

worst maximal variant. We must pay attention to the

fact that SA provides only approximate solution).

The algorithm can be successfully used e.g. in

autonomous public transport restricted by means of

rules, technical requirements in autonomous robots

and military equipment. In addition, the algorithm can

be used in various computer games where a path

planning is done in dynamic environment.

It is possible to conclude that the algorithm offered

can be used in the different application areas not only

for path planning of a robot.

VI REFERENCES

[1] E. Aarts and J. Korst. Simulated annealing and Boltzman

machines: A stochastic approach to combinatorial

optimization and neural computing. John Wiley and Sons,
1989.

[2] D. L. Applegate, R. E. Bixby, V. Chvátal and W.J. Cook, The

Traveling Salesman Problem, Princeton University Press,
Princeton, USA, 2007.

[3] W. J. Cook, In Pursuit of the Traveling Salesman. Princeton

University Press, Princeton, USA 2011.
[4] D. Davendra, Traveling Salesman Problem, Theory and

Applications. InTech, Rijeka, Croatia, 2010.

[5] R.H.J.M. Otten and L.P.P.P. Ginneken, The Annealing
Algorithm. Kluwer Academic Publishers, 1989.

[6] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza,

Introduction to Autonomous Mobile Robots. A Bradford Book
The MIT Press Cambridge, Massachusetts London, England,

2011.

[7] P. H. Batavia and I. Nourbakhsh, Path planning for the Cye
personal robot, IEEE/RSJ International Conference on

Intelligent Robots and Systems(IROS), 2000.

[8] R. Biswas, B. Limketaki, S. Sanner and S. Thrun, Towards
Object Mapping in Dynamic Environments with Mobile

Robots, Proceedings of the Conference on Intelligent Robots

and Systems (IROS), Lausanne, Switzerland, 2002.
[9] M. Dorigo and L. M. Gambardella, “Ant Colonies for the

Traveling Salesman Problem,” University Libre de Bruxelles,

Belgium, 1996.
[10] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman

Problem: A Case Study in Local Optimization.” in E. H. L.

Aarts and J. K. Lenstra (editors), John Wiley and Sons, Ltd.,
1997, pp. 215-310.

[11] V. Ashkenazi, D. Park and M. Dumville, “Robot Positioning

and the Global Navigation Satellite System,” Industrial
Robots: An International Journal, 27(6), pp. 419-426, 2000.

[12] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann,

F. Schneider, J. Strikos and S. Thrun, “The Mobile Robot
Rhino,” AI Magazine, 16(1), 1995.

[13] H. Choset, “Coverage of Known Spaces: The Boustrophedon
Cellular Decomposition, in Autonomous Robots,” 9:247-253,

Kluwer, 2000.

[14] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, v. 1, p. 269-271, 1959.

[15] S. Kirkpatrick, “Optimization by Simulated Annealing:

Quantitative Studies,” Journal of Statistical Physics, 34, pp.
975-986, 1984.

[16] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization

by Simulated Annealing,” Science, 220, pp. 671-680, 1983.
[17] E. Valbahs and P. Grabusts, “Motion Planning of an

Autonomous Robot in Closed Space with Obstacles,”

Scientific Journal of RTU. 5. series., Datorzinatne. - 15. vol.,
pp. 52-57, 2012.

[18] M. P. Vecchi and S. Kirkpatrick, “Global Wiring by Simulated

Annealing,” IEEE Transaction on Computer Aided Design,
CAD-2, pp. 215-222, 1983.

