FRACTAL PROPERTIES OF MICROPLASMA BREAKDOWN AND STRUCTURAL HETEROGENEITY OF SEMICONDUCTOR MATERIALS

Authors

  • Samuil Khanin Herzen State Pedagogical University of Russia (RU)
  • Antonina Shashkina St.Petersburg State University of Film and Television (RU)

DOI:

https://doi.org/10.17770/etr2019vol3.4051

Keywords:

avalanche breakdown, microplasma, p-n-junction, fractal, structural defect, semiconductor structure

Abstract

This work presents experimental results on the study of current-voltage characteristics and oscillograms of microplasma pulses of the p-n-junction avalanche breakdown. Based on the latter, the pulse duration distributions are determined. As a result, it is shown that microplasma noise has fractal properties. The latter form the basis of avalanche breakdown types developed classification. The correlation between the fractal dimension of microplasma noise and structural inhomogeneities of functional semiconductor structures is revealed.

Downloads

Download data is not yet available.

References

Grekhov I.V., Serezhkin U.N. Avalanche breakdown of p-n-junction in semiconductors [Text]. – L.: Energia, Leningrad department, 1980. p.152

Vorotkov M.V., Skvortsov N.N., Shashkina A.S. Fractal properties of microplasma noise // Innovative technologies in media education. Materials of III All-Russia research and practical conference, March 27-28, 2015. Issue 3. SPb: SPbGUKIT, 2015. Pp. 65-71.

Shashkina A.S., Krivosheikin A.V., Skvortsov N.N., Vorotkov M.V. Fractal properties of avalanche breakdown of LED // STB SPbPU. Physicomathematical sciences. 2016. №4 (253) 2016. Pp. 85-93.

Shashkina A.S., Krivosheikin A.V., Skvortsov N.N., Vorotkov M.V. Avalanche breakdown of p-n-junction in radiotechnics // Scientific and technical bulletin for information technology, mechanics and optics. 2016. Vol. 16. № 5. Pp. 864–871.

Ivanov P.A., Potapov A.S., Samsonova T.P., Grekhov I.V. Current–voltage characteristics of high-voltage 4H-SiC p +–n 0–n + diodes in the avalanche breakdown mode // Semiconductors. 2017. Т. 51. № 3. Pp. 374-378.

Feder E. Fractals. — M: MIR, 1991. — Pp. 254.

Shchitov I.N., Galkina V.G. Introduction in signal theory. Part 3. Wavelet transform. SPb: SPbGUKIT publishing house, 2012. p.99

Tushinskiy L.I. Synergetical basis for structures classification and evolution in modern material sciences // Fractals and applied synergetics 2005: Collection of articles. – M: Interkontakt-Nauka, 2005.

Schoell, E. Self-organisation in semiconductors. Nonequillibrium phase junctions in semiconductors due to generation-recombination processes. / E. Schoell − M.: Mir, 1991. − p.464

Kuznetsov V. S., Kuznetsov P. A. To the question of spatial self-organisation of current free carrier in strong electric fields // Materials for electronic technology. 2012. №3.

Skvortsov N.N., Shashkina A.S. Avalanche breakdown self-organisation in LEDs // Papers of VII All-Russia conference «Irreversible processes in nature and technics». BMSTU, January, 27-29 Moscow, 2015. Part II, pp. 46-48.

W. Shockley, W.T. Read. Phys. Rev., 87, 835 (1952)

Downloads

Published

2019-06-20

How to Cite

[1]
S. Khanin and A. Shashkina, “FRACTAL PROPERTIES OF MICROPLASMA BREAKDOWN AND STRUCTURAL HETEROGENEITY OF SEMICONDUCTOR MATERIALS”, ETR, vol. 3, pp. 105–108, Jun. 2019, doi: 10.17770/etr2019vol3.4051.