Rasma Tretjakova, Gotfrīds Noviks, Gundars Mežinskis


Sedimentary clay of three Latvia region of Latgale lakes – Zeiļi, Pauguļi and Plusons – was investigated. Mineral composition was determined by X-ray diffraction, the average size and size distribution of particles by dynamic light scattering method, specific surface by Brunauer-Emmett-Teller method, and adsorption characteristics after methylene blue: adsorption capacity and adsorption isotherms. The samples contained typical clay crystalline phases – illite, kaolinite – and rock forming minerals – quartz, dolomite, calcite, plagioclase, albite, and enstatite. The granulometric content of samples is mostly characterised by silt (2 – 63 µm) and clay (< 2 µm) fractions. Specific surface area varied from 9.45 to 20.68 m2/g. The adsorption capacity of lake clay was in the range of 25.8 – 45.8 mg/g. Clay adsorption isotherms were represented by the second and fifth type curves according to the International Union of Pure and Applied Chemistry (IUPAC) classification, indicating the presence of micro- and macroporous space in samples and strong intermolecular interactions. The difference between properties of clay in different lakes and at different depths and their influencing factors have been clarified. The information obtained enables to predict the areas of use of clay in cosmetics and medical treatment.


lake clay; mineral composition; granulometric content; adsorption capacity

Full Text:



V. Segliņš, A. Brangulis, Resources of the Latvian Earth Entrails. Rīga: State Environmental Service, Technical University Press, 1996. [V. Segliņš, A. Brangulis, Latvijas zemes dzīļu resursi. Rīga: Valsts vides dienests, Tehniskās universitātes tipogrāfija], 1996. (in Latvian).

J. Vecstaudža, A.Stunda-Zujeva, Z. Irbe, L. Bērziņa-Cimdiņa, “Composition of Commercial Cosmetic Clay and Suitability of Latvian Clay for Cosmetic Purposes,” [“Komerciālo kosmētisko mālu sastāvs un Latvijas mālu piemērotība lietojumam kosmētikā,”] Material Science and Applied Chemistry, vol. 26, pp. 42 -48., 2012. (in Latvian).

M. Leinerte, Lakes are Burning! [Ezeri deg!] Rīga: Zinātne, 1988. (in Latvian).

R. E. Grim, H. Kodama, Clay mineral.[Online]. Available: [Accessed November 29, 2018].

S. Haydel, C. Remenih, L. Williams, “Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens,” The Journal of antimicrobial chemotherapy, vol. 61, no. 2, pp. 353–361, 2008. [Online]. Available: [Accessed January 3, 2019].

M. Ghiaci, H. Aghaei, S. Soleimanian, S. Sedaghat, “Enzyme immobilization: Part 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase,”Applied Clay Science, vol. 43 (3-4), pp. 289-295, 2009.

E. Ray, J. R. Ferrell, “Medicinal clay and spiritual healing,” Clays and Clay Minerals, vol. 56, no. 6, pp. 751–760, 2008. [Online]. Available: [Accessed November 21, 2018].

L. B. Williams, S. E. Haydel, “Evaluation of the medicinal use of clay minerals as antibacterial agents,” Geol Rev., vol. 52, no. 7/8, pp. 745–770, 2010. [Online]. Available:

M. I. Carretero, G. Lagaly, “Clays and health: an introduction,” Applied Clay Science, vol 36, pp.1-3, 2007.

M. I. Carretero, “Clay minerals and their beneficial effects upon human health. A review,” App. Clay Science, vol. 21, pp. 155-163, 2002.

C.S.F. Gomes, J.B.P. Silva, “Minerals and clay minerals in medical geology,” Applied Clay Science, vol. 36, pp. 4–21. 2007.

Lynda B. Williams, Shelley E. Haydel, Rossman F. Giese, Jr., Dennis D. Eberl, “Chemical and mineralogical characteristics of French green clays used for healing,” Clays and Clay Minerals, vol. 56, no. 4, pp. 437–452, 2008. [Online]. Available:

M.I. Carretero, C.S.F. Gomes, F. Tateo, “Clays and human health,” In: F. Bergaya F, Theng BKG, Lagaly G, editors. Handbook of Clay Science. Elsevier Ltd, 2006. pp. 717–741.

M.V.R. Velasco, V. Zague, M.F. Dario, D. O. Nishikawa, C.A.S.O. Pinto, M. M. Almeida, G. H. G.Trossini, A.C. V.Coelho, A. R. Baby. “Characterization and Short-Term clinical study of clay facial mask,” Journal of Basic and Applied Pharmaceutical Science Rev Ciênc Farm Básica Apl, vol. 37, no.1, pp.1-6, 2016.

L. Meier, R. Stange, A. Michalsen, B. Uehleke, “Clay jojoba oil facial mask for lesioned skin and mild acne – results of aprospective, observational pilot study,” Forsch Komplementmed, vol.19, pp. 75–79, 2012.

S.F. Mpuchane, G-IE. Ekosse, B.A. Gashe, I. Morobe, S.H. Coetzee, “Microbiological characterisation of southern African medicinal and cosmetic clays,” Environ Health Res., vol. 20, no.1, pp. 27–41, 2010.

C. Viseras, C. Aguzzi, P. Cerezo, A. Lopez-Galindo, “Uses of clay minerals in semisolid health care and therapeutic products,” Applied Clay Science, vol. 36(1-3), pp. 37–50, 2007.

State research programme 2014.10-4/VPP-6/6 “A Study of Forest and Earth Entrail Resources, Sustainable Use – New Products and Technologies” (ResPod) (2014-2017). A Study of Earth Entrail Resources – New Products and Technologies (Land) [Valsts pētījumu programma 2014.10-4/VPP-6/6 "Meža un zemes dzīļu resursu izpēte, ilgtspējīga izmantošana – jauni produkti un tehnoloģijas" (ResProd) (2014-2017). Zemes dzīļu resursu izpēte - jauni produkti un tehnoloģijas (Zeme)]. (in Latvian).

A. López-Galindo, C. Viseras, P Cerezo, “Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products,” Applied Clay Science, vol. 36, no. 1–3, pp. 51–63, 2007.

M. I. Carretero, M. Pozo, “Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients,” Applied Clay Science, vol. 47, no. 3–4, pp. 171–181, 2010.

M. Çelik Karakaya, N. Karakaya, Ş. Sarıoğlan, M. Koral, “Some properties of thermal muds of some spas in Turkey,” Applied Clay Science, vol. 48, no. 3, pp. 531–537, 2012.

J. Legido, C. Medina, M. L. Mourelle, M.I. Carretero, M. Pozo, “Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy,” Applied Clay Science, vol. 36, no. 1–3, pp. 148–160, 2007.

Bergaya, F., Theng, B. K., Lagaly, G. Handbook of Clay Science. Elsevier Science, 2006.

A. Stinkule. Clay in the Entrails of the Latvian Land. Rīga: RTU Press. [Māli Latvijas zemes dzīlēs. Rīga: RTU izdevniecība], 2014.

D. M. Moore, R. C. Reynolds, Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, Ch. 1, 2, & 3.1989.

BET (Brunauer, Emmett and Teller) [Online]. Available: [Accessed January 2, 2019].

A.U. Itodo , F.W .Abdulrahman, L.G. Hassan, S.A.Maigandi, H.U. Itodo, “Application of Methylene Blue and Iodine Adsorption in the Measurement of Specific Surface Area by four Acid and Salt Treated Activated Carbons,” New York Science Journal, vol.3, no. 5, 2010.

ASTM C837-09(2014), Standard Test Method for Methylene Blue Index of Clay, ASTM International, West Conshohocken, PA, 2014, [Online]. Available: [Accessed December 12, 2018].

M. Khalfaoui, S. Knani, M.A. Hachicha, A. BenLamine, “New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment”, Journal of Colloid and Interface Science,” vol. 263, Issue 2, pp. 350-356, 15 July 2003.

M. Mattioli, L.Giardini, C. Roselli, D. Desideri, “Mineralogical characterization of commercial clays used in cosmetics and possible risk for health,” Applied Clay Science, vol. 119, pp. 449–454, 2016.

M. Donohue, “A New Classification of Adsorption Isotherms,” [Online]. Available: [Accessed: January 21, 2019].

V. Puzule, G. Noviks, “The composition and usefulness perspectives of Katlesi geological suite of Mednieki deposit clay,” International symposium “Clays and Ceramics” University of Latvia, 29–31 January, 2018.

E.Ts. Dashinamzhilova, S.Ts. Hanhasayeva, L.V. Bryzgalova, A.A. Savina, “Physical and Chemical Properties of Natural Clays in Deposits of Buryatia”, Success of Modern Natural Sciences, no. 6, pp. 13-17, 2017. [Э.Ц. Дашинамжилова, С.Ц. Ханхасаева, Л.В. Брызгалова, А.А. Савина “Физико-химические свойства природных глин месторождений Бурятии,” Успехи современного естествознания No 6, pp. 13-17, 2017]. [Online]. Available: [Accessed January 29, 2019]. (in Russian).

V.Lakevičs. Latvijas mālu sorbcijas īpašības [Latvian Clay Sorption Properties]. Rīga: RTU, 2006 (in Latvian).

A.N. Tishin, U.A. Krut, O.M. Tishina, E.A. Beskhmelnitsyna, V.I. Yakushev, “Physico-chemical properties of montmorillonite clays and their application in clinical practice (review) Research result: pharmacology and clinical pharmacology,” vol. 3, no. 2, pp. 119-128, 2017.

G.K. Sarma, S.S. Gupta, K.G. Bhattacharyya, “Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.” J. Environ. Manag, vol. 171, pp. 1-10, 2016.

M. I. Carretero, M. Pozo, “Clay and non-clay minerals in the pharmaceutical industry. Part I. Excipients and medical applications,” Applied Clay Science, vol. 46, pp. 73–80, 2009.

D.M.E. Matike, Georges-Ivo E. Ekosse, V. M. Ngole, “ Physico-chemical properties of clayey soils used traditionally for cosmetics in Eastern Cape, South Africa,” International Journal of the Physical Sciences, vol. 6. no. 33, pp. 7557 - 7566, 9 December 2011. [Online]. Available: [Accessed January 11, 2019].

M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M.R. Mozafari, “Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems,” Pharmaceutics, vol. 10, no. 2, pp.1-17, 2018.



  • There are currently no refbacks.