APPLICATION OF UNMANNED AERIAL VEHICLES FOR GLACIER RESEARCH IN THE ARCTIC AND ANTARCTIC
Abstract
Keywords
Full Text:
PDFReferences
C. Porter, P. Morin, I. Howat, M-J. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, M. Willis, C. Kelleher, M. Cloutier, E. Husby, S. Foga, H. Nakamura, M. Platson, M. Wethington, C. Williamson, G. Bauer, J. Enos, G. Arnold, W. Kramer, P. Becker, A. Doshi, C. D'Souza, P. Cummens, F. Laurier, and M. Bojesen, "ArcticDEM", March 2018. [online] Available: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH [Accessed: March 31, 2019], https://doi.org/10.7910/DVN/OHHUKH
A. Finlayson, E. Phillips, Í. Ö. Benediktsson, L. K., Zoet, N. R. Iverson, and J. Everest, “Subglacial drumlins and englacial fractures at the surge-type glacier, Múlajökull, Iceland,” Earth Surface Processes and Landforms, vol. 44, no. 1, pp. 367–380, August 2018, https://doi.org/10.1002/esp.4485
Takasu, T. RTKLIB: Open Source Program Package for RTK-GPS: FOSS4G 2009, November 2, 2009, Tokyo, Japan. [online] Available: http://gpspp.sakura.ne.jp/paper2005/foss4g_2009_rtklib.pdf [Accessed: December 31, 2018].
“Agisoft Metashape User Manual: Professional Edition, Version 1.5.” 2018. [online]. Available: https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf [Accessed: March 25, 2019].
P. Pellikka and W. G. Rees, Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers. London, UK: Taylor & Francis Goup, 2010.
RGI Consortium, “Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0,” Global Land Ice Measurements from Space, Colorado, USA, Tech. Rep., 2017, https://doi.org/10.7265/N5-RGI-60
B. M. P. Chandler, D. J. A. Evans, D. H. Roberts, M. Ewertowski, and A. I. Clayton, “Glacial geomorphology of the Skálafellsjökull foreland, Iceland: A case study of ‘annual’ moraines,” Journal of Maps, vol. 12, no. 5, pp. 904–916, 2016, http://dx.doi.org/10.1080/17445647.2015.1096216
“GLIMS: Global Land Ice Measurements from Space,” 2005. [Online]. Available: https://www.glims.org/ [Accessed: March 20, 2019], http://dx.doi.org/10.7265/N5V98602
I. Howat, P. Morin, C. Porter, M. J. Noh, “The Reference Elevation Model of Antarctica,” 2018. [Online] Available: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SAIK8B. [Accessed: Jan. 10, 2019], V1, https://doi.org/10.7910/DVN/SAIK8B
W. W. Immerzeel, P. D. A. Kraaijenbrink, J. M. Shea, A. B. Shrestha, F. Pellicciotti, M. F. P. Bierkens, and S. M. De Jong, “High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles,” Remote Sensing Environment, vol. 150, pp. 93–103, July 2014, https://doi.org/10.1016/j.rse.2014.04.025
A. Bhardwaj, L. Sam, F.J. Martín-Torres, and R. Kumar, “UAVs as remote sensing platform in glaciology: Present applications and future prospects,” Remote sensing of environment, vol. 175, pp. 196–204, March 2016, https://doi.org/10.1016/j.rse.2015.12.029
J. C. Ely, C. Graham, I. D. Barr, B. R. Rea, M. Spagnolo, and J. Evans, “Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaciären,” Earth Surface Processes and Landforms, vol. 42, no. 6, pp. 877–888, Sept 2017, https://doi.org/10.1002/esp.4044
M. W. Ewertowski, D. J. A. Evans, D. H. Roberts, and A. M. Tomczyk, “Glacial geomorphology of the terrestrial margins of the tidewater glacier, Nordenskiöldbreen, Svalbard,” Journal of Maps, vol. 12, sup1, pp. 476–487, 2016, https://doi.org/10.1080/17445647.2016.1192329
N. G. Midgley, T. N. Tonkin, D. J. Graham, and S. J. Cook, “Evolution of high-Arctic glacial landforms during deglaciation,” Geomorphology, vol. 311, pp. 63–75, June 2018, https://doi.org/10.1016/j.geomorph.2018.03.027
T. N. Tonkin, N. G. Midgley, S. J. Cook, and D. J. Graham, “Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: a case study from a polythermal glacier in Svalbard,” Geomorphology, vol. 258, pp. 1–10, April 2016, https://doi.org/10.1016/j.geomorph.2015.12.019
M. Rossini, B. Di Mauro, R. Garzonio, G. Baccolo, G. Cavallini, M. Mattavelli, M. De Amicis, and R. Colombo, “Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry,” Geomorphology, vol. 304, pp. 159–172, March 2018, https://doi.org/10.1016/j.geomorph.2017.12.039
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke, “UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet,” Cryosphere, vol. 9, no. 1, pp. 1–11, Jan. 2015, https://doi.org/10.5194/tc-9-1-2015
“GNSS solutions reference manual” 2012. [Online]. Available: https://ashgps.com/2/GNSS%20Solutions/manuals/English/GNSSSolutions_RM_F_en.pdf [Accessed: December 25, 2018].
P. Burdziakowski, UAV in today’s photogrammetry – application areas and challenges. Photogrammetry and Remote Sensing: 18th International Multidisciplinary Scientific GeoConference SGEM 2018, August 24 – September 2, 2018, Albena, Bulgaria.
P.J. Hardin, V. Lulla, R.R. Jensen, and J.R. Jensen, “Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: challenges and opportunities revised,” GIScience & Remote Sensing, vol. 56, no. 2, pp. 309-322, 2018. https://doi.org/10.1080/15481603.2018.1510088
M.R. James, and S. Robson, “Mitigating systematic error in topographic models derived from UAV and ground-based image networks,” Earth Surface Processes and Landforms, vol. 39, no. 10, pp. 1413–1420, May 2014, https://doi.org/doi:10.1002/esp.3609
DOI: https://doi.org/10.17770/etr2019vol1.4130
Refbacks
- There are currently no refbacks.