OPTOELECTRONIC DEVICE FOR MEASURING THE POWER OF LASER RADIATION

Dimcho Pulov, Tsanko Karadzhov

Abstract


A device for measuring the power of the laser radiation.has been designed. The device consists of transmitter and receiving part. The transmitter includes optical radiation source and optical system for collimation of radiation. The receiver part consists of silicon photodiodes, electronic signal processing unit   and  unit for measurements.

 


Keywords


Gaussian laser beam; Galilean beam expander; receiver the laser source ; photodiodes

Full Text:

PDF

References


G. I. Cukanova,A. V. Baholdin, Specialnie razdeli prikladnoj optiki,SPb,GUITMO, 2007.

D. Dichev, H. Koev, T. Bakalova and P. Louda, “А Меаsuring Method for Gyro-Free Determination of the Parameters of Moving Objects”, Metrology and Measurement Systems, Vol. 23, Issue 1,2016, pp. 107-118, DOI: 10.1515/mms-2016-0001.

H.J. Eichler, J. Eichler and O. Lux, Lasers: Basics, Advances and Applications, Springer Series in Optical Sciences, Springer Nature Switzerland AG, 2018.

I.A. Konyakhin, A. Merson, A.N. Timofeev and A.I. Konyakhin , „Optoelectronic system on the base of the anamorphic element for the measuring of the elevation angles”, in Proc. of SPIE, Sixth International Symposium on Precision Engineering Measurements and Instrumentation 2010, Vol. 7544, p. 75443N, DOI: 10.1117/12.885594.

L. Lazov, N. Angelov, E. Teirumnieks, Method for Preliminary Estimation of the Critical Power Density in Laser Technological Processes, Proceedings of the 12th International Scientific and Practical Conference, Rezekne, Latvia, 2019, Vol. 3, pp. 129 -133, DOI: 10.17770/etr2019vol3.4140.

N. Kenarov, PIC mikrokontroleri – chast 2,Mlad konstruktor, Varna, 2006.

Siegman, A.E., Lasers, Oxford University Press, University Science Books, Oxford, England, 1986.

Yu. M. Klimkov, Prikladnaya lazernaya optika, Мoskva, Mashinostroenie, 1985.

D. Dichev, H. Koev, T. Bakalova and P. Louda, “A Gyro-Free System for Measuring the Parameters of Moving Objects”, Measurement Science Review, Vol. 14, Issue 5,2014, pp. 263-269, DOI:10.2478/msr-2014-0036.

Pencheva T., D. Pulov, B. Gyoch, M. Nenkov Design of CCD Optical System for Thermal IR Spectral Region. In pr. 29-th International Spring Seminar fn Electronics Technology, St. Marienthal, Germany, Verlag Dr. Markus A. Detert, 2006, pp. 413-418, DOI: 10.1109/ISSE.2006.365380.

D. Shafer, "Laser beam steerer–expander", Applied Optics, Vol. 17, Issue 22, 1978, pp. 3584-3586, DOI: 10.1364/AO.17.003584

M. Scaggs and G. Haas, "Optical alignment influenced aberrations in laser beam delivery systems and their correction", Proc. SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 93430T (March 3, 2015), DOI: 10.1117/12.2076630.

G. Simonova and V. Maximov, „Collimation system design for multi-wavenlength Nd:Yag laser”, Interexpo Geo – Siberia, Vol. 5, Issue 3, 2013, pp.63-67.

G. Kohanenko, M. Makogon, Y. Ponomarev, O. Rinkov and G. Simonova, „Calculation of two-wavelength laser beam expander fluorescent lidar”, Opticheski zhurnal, Vol. 4, Issue 79, 2012, pp. 28-32.

M. Guo, G. Jin, J. Cai, W. Zhang and Z. Wei, "Study and design of beam expander with wide aperture", Proc. SPIE 9295, International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing; and Micro/Nano Technologies, 92950T (December 18, 2014).

Sidney A. Self, "Focusing of spherical Gaussian beams", Applied Optics, Vol. 22, Issue 5, 1983, pp. 658-661, DOI: 10.1364/AO.22.000658

H. Sun, “Thin Lens Equation for a Real Laser Beam with Weak Lens Aperture Truncation”, Optical Engineering, Vol. 37, No. 11, 1998, pp. 2903-2913, DOI: 10.1117/1.601877.

D. L. Shealy, "Optical design of laser beam shaping systems," in International Optical Design Conference, 2002 OSA Technical Digest Series (Optical Society of America, 2002), paper IWA2, DOI: 10.1364/iodc.2002.iwa2.




DOI: https://doi.org/10.17770/etr2021vol3.6590

Refbacks

  • There are currently no refbacks.


SCImago Journal & Country Rank