RESEARCH OF HUMAN HAND MOVEMENTS REPEATABILITY USING ROBOTIC SYSTEM

Paulius Sakalys, Loreta Savulioniene, Dainius Savulionis

Abstract


The aim of the research is to determine and evaluate the repeatability of the robotic system by repeating the movements of the human hand, to identify the displacement using digital infrared projection equipment, skeletal methods and depth cameras. The article reviews and selects possible skeletal methods, motion recognition algorithms, reviews and substantiates the physical equipment selected for the technical stage of the experiment. The plan of experimental research stages, research stand, systematized research results, conclusions and usability suggestions are described.


Keywords


robotic system, skeletal methods, IR projection, depth camera

Full Text:

PDF

References


Carmelo, M., Acutis, A., Carrabba, M., Criscenti, G., Vozzi, G. (2016). Nanobiomaterials in Soft Tissue Engineering: Applications of Nanobiomaterials. Volume 5. Machine design for multimaterial processing, 111-140. DOI: https://doi.org/10.1016/B978-0-323-42865-1.00005-2

Chaminade, T., & Cheng, G. (2019). Journal of Physiology-Paris. Volume 103. Social cognitive neuroscience and humanoid robotics, 286-295. DOI: https://doi.org/10.1016/j.jphysparis.2009.08.011

Davies, E.R. (2017). Computer Vision. London: AcademicPress.

Jin, D., Chen, C., Hoffman, E.A., Saha, P.K. (2017) Skeletonization: Theory, Methods and Applications. Curve skeletonization using minimum-cost path, 151-180. DOI: https://doi.org/10.1016/B978-0-08-101291-8.00007-9

Kar, A. (2011). Skeletal Tracking using Microsoft Kinect. Kanpur

Nava, A., Brena, R., Garrido, L. (2014). Recognizing Activities Using a Kinect Skeleton Tracking and Hidden Markov Models. 13th Mexican International Conference on Artificial Intelligence (MICAI), DOI: https://ieeexplore.ieee.org/document/7222846.

N.D. Example of Voronoy‘s cell. Retrieved from: https://stackoverflow.com/questions/42047077/voronoi-site-points-from-delaunay-triangulation

Palionyte, A (2011). Discretization of Continuum Structures via Image Algebra Methods. Vilnius: Vilnius Gediminas Technical University.

Paulinas, M., & Rokicki, J. (2008). Panasios formos pavirsiu, centrines asies radimo ir filtravimo metodika. Biomedical Engineering, 209-212.

Rokicki, J. (2010). Skeletavimo metodu apzvalga. Science - Future of Lithuania, Vol. 2 (No. 1), 19-22.

Saha, P.K., Borgefors, G., Baja, G.S. (2017). Skeletonization: Theory, Methods and Applications. Skeletonization and its applications – a review, 3-42. DOI: https://doi.org/10.1016/B978-0-08-101291-8.00002-X

Stitilis, R. (2014). Kinect Controlled Computer Game. Siauliai: Siauliai University

Vassilevski, Y., Olshanskii, M., Simakov, S., Kolobov A., Dailov, A. (2020) Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Computational hemodynamics in vascular surgery, 189-215. DOI: https://doi.org/10.1016/B978-0-12-815653-7.00009-9

Palagyi, K. (n.d.) Skeletonization. Retrieved from: http://www.inf.u-szeged.hu/~palagyi/skel/skel.html

Yong, Z., Fei, T., Shaofan, W., 3D human body skeleton extraction from consecutive surfaces using a spatial–temporal consistency model. Retrieved from: https://link.springer.com/article/10.1007/s00371-020-01851-3




DOI: https://doi.org/10.17770/etr2021vol3.6591

Refbacks

  • There are currently no refbacks.


SCImago Journal & Country Rank