INVESTIGATION OF RESIDUAL STRESSES AND DEFORMATIONS OF A PULTRUDED THIN BEAM PROFILE

Authors

  • Endija Namsone Institute of Materials and Structures, Riga Technical University

DOI:

https://doi.org/10.17770/etr2021vol3.6635

Keywords:

finite element method, pultrusion, residual stresses, thermo-mechanical

Abstract

In the present study, a coupled 3D transient thermo-chemical analysis together with 2D plane strain mechanical analysis is carried out for the pultrusion process. For the mechanical analysis, a cure hardening instantaneous linear elastic (CHILE) approach is used of a thin beam profile made of glass fibre and epoxy resin. The applied approach is efficient and fast to investigate the residual stresses and deformations together with the distributions of temperature and degree of cure obtained from the thermo-chemical analysis.

 

Downloads

Download data is not yet available.

References

P. Masarati, M. Morandini, J. Riemenschneider, P. Wierach, S. Gluhih, E. Barkanov, “Optimal Design of an active twist 1:2.5 scale rotor blade,”in: Proceedings of the 31st European Rotorcraft Forum, Firenze, Italy, pp. 37.1-37.14, 2005.

E. Barkanov, E. Eglītis, F. Almeida, M. C. Bowering, G. Watson, “Optimal design of composite lateral wing upper covers. Part II: Nonlinear buckling analysis,” Aerosp. Sci. Technol. Vol. 51, pp. 87-95, 2016, https://doi./org/10.1016/j.ast.2016.01.020

E. Barkanov, A. Kovalov, P. Wierach, J. Riemenschneider, “Optimised comparative analysis of an active twist for helicopter rotor blades with C and D-spar designs,” Mech. Compos. Mater. Vol. 5., pp. 553-566, 2018, https://doi.org/10.1007/s11029-018-9764-2

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A, vol.37, pp. 592-601, 2006, https://doi.org/10.1016/j.compositesa.2005.05.016

P. Akishin, E. Barkanov, A .Bondarchuk, “Finite element modelling and analysis of conventional pultrusion processes,” IOP Conf. Series: Materials Science and Engineering, vol. 96, p. 10, 2015, http://iopscience.iop.org/article/10.1088/1757-899X/96/1/012012

E. Barkanov, P. Akishin, R. Emmerich, M. Graf, “Numerical simulation of advanced pultrusion processes with microwave heating,” in: Proceeding of the VII European Congress on Computational Methods in Applied Sciences and Engineering, 2016, pp. 7720-7738, https://doi.org/10.7712/100016.2368.5953

E. Barkanov, P. Akishin, N.L. Miazza, S. Galvez, “ANSYS-based algorithms for a simulations of pultrusion processes,” Mech. Adv. Mater. Struc., vol. 5, pp. 377-384, 2017, https://doi.org./10.1080/15376494.2016.1191096

E. Barkanov, P. Akishin, N.L. Miazza, S. Galvez, N. Pantelelis, “Experimental validation of thermo-chemical algorithm for a simulation of pultrusion processes,” IOP Conf. series: Journal of Physics:Conf. series, vol. 991, 2018, 0.1088/1742-6596/991/1/012009

E. Barkanov, P. Akishin, E. Namsone, A. Bondarchuk, N. Pantelelis, “Real time characterization of pultrusion processes with a temperature control,” Mech. Compos. Mater., vol. 56, pp. 135-148, 2020, https://doi.org/10.1007/s11029-020-09868-4

Y. R. Chachad, J, A, Roux, J. G. Vaughan, E. S. Arafat, “Thermal model for three-dimensional irregular shaped pultruded fiberglass composites,” J. Compos. Mater, vol. 6, pp. 692-721, 1996, https://doi.org/10.1177/002199839603000604

I. Baran, C.C. Tutum, J. H. Hattel, “The effect of thermal contact resistance on the thermosetting pultrusion processes,” Composites: Part B, vol. 45, pp. 995-1000, 2013, https://doi.org/10.1016/j.compositesb.2012.09.049

I. Baran, C. C. Tutum, M. W. Nielsen, J. H. Hattel, “Process induced residual stresses and distortions in pultrusion,” Composites:Part B, vol. 51, pp. 148-161, 2013, http://dx.doi.org/10.1016/j.compositesb.2013.03.031

I. Baran, J. H. Hattel, R. Akkerman, “Investigation of process induced warpage for pultrusion of rectangular hollow profile,” Composites:Part B, vol. 68, pp. 365-374, 2015, http://dx.doi.org/10.1016/j.compositesb.2014.07.032

T. A. Bogetti and J. W. Gillesprie, “Process-induced stress and deformation in thick-section thermoset composite laminates,” J. Compos. Mater., vol. 26, pp. 626-660, 1992, https://doi.org/10.1177/002199839202600502

A. Johnston, R. Vaziri, A. Poursartip, “A plane straine model for process-induced deformation of laminated composite structures,” J. Compos. Mater., vol. 35, pp. 1435-1469, 2001, https://www.researchgate.net/publication/254112346

I. Baran, J. H. Hattel, R. Akkerman, C. C. Tutum, “Mechanical modelling of pultrusion process: 2D and 3D numerical approaches,” Appl. Compos. Mater., vol. 22, pp. 99-118, 2015, https://doi.org/10.1007/s10443-014-9394-3

I. Baran, J.H. Hattel and C. C. Tutum, “The impact of process parameters on the residual stresses and distortions in pultrusion ,“ in 19th International Conference on Composite Materials, 2013, pp. 6328-6337.

P. Akishin, E. Barkanov, N. Miazza, S. Galvez, “Curing kinetic models of resins for microwave assisted pultrusion,” Key Eng. Mater., vol. 721, pp. 92-96, 2017, https://doi.org/10.4028/www.scientific.net/KEM.721.92

D. Zenkert and M. Battley, Laminate and Sandwich Structures: Foundations of fibre composites. 2nd edition. Denmark: Polyteknisk Forlarg, 2009.

Downloads

Published

2021-06-16

How to Cite

[1]
E. Namsone, “INVESTIGATION OF RESIDUAL STRESSES AND DEFORMATIONS OF A PULTRUDED THIN BEAM PROFILE”, ETR, vol. 3, pp. 232–235, Jun. 2021, doi: 10.17770/etr2021vol3.6635.