Investigation of the Corrosion Behaviour of Aluminium Alloy in Selected Environments

Kalina Kamarska
Technical University–Sofia, Branch
Plovdiv
Department of Mathematics, Physics, Chemistry
Plovdiv, Bulgaria
e-mail:kamarska@tu-plovdiv.bg

Abstract—The corrosion behaviour of aluminium alloy EN AW-2011 was investigated in selected environments of various electrolytes using gravimetric technique. The results showed that, under the conditions employed in the present work, the corrosion rate of this alloy depends on the specific ions present in solution. The corrosion resistance of aluminium alloy EN AW-2011 is higher in solutions of acids and salts containing sulfate and nitrate ions than in these consisting chloride ions.

Keywords—aluminium alloy EN AW-2011, corrosion resistance.

I. INTRODUCTION

Aluminium alloy EN AW-2011 is construction material widely used in the automotive industry, aircraft and chemical industries as screw machine products, appliance parts and trim, ordnance, automotive, electronic, fasteners, hardware, machine parts [1]. During its exploitation, in natural or technological environments as electrolytic media, it is in contact with aggressive components and interacting with them is progressively destroyed.

Corrosion of metals is the spontaneous chemical destruction of metals under the effect of their environment [2]. The corrosion study of aluminium and aluminium alloys is of immense technological importance due to their growing industrial application.

The corrosion behaviour of aluminium alloys depends on the chemical resistance of oxide layer of Al₂O₃, the characteristics of the parent metal, the chemical composition and the number of the alloying elements [3], [4]. The environments that contain aggressive ions, such as chloride, activate the corrosion process, impair the stability and integrity of the passive layer [5].

In recent years the environmental factors affecting the corrosion behaviour of aluminium and its alloys in salt solutions [6] - [9] and acid solutions [10] - [12], have very often been studied.

The aim of the present investigation is to study the corrosion behaviour of aluminium alloy EN AW-2011 under exposure to selected environments of different acids and salts containing chloride, nitrate and sulfate ions and measure corrosion rate using gravimetric technique.

II. MATERIALS AND METHODS

The experiments were performed with samples of aluminium alloy EN AW-2011 with an exposed area of 8.54 cm². For the corrosion tests, a 1M solutions of various electrolytes such as HCl, HNO₃, H₂SO₄, NaCl, NaNO₃ and Na₂SO₄ were used at room temperature (≈ 25°C).

Before immersion in solution, the experimental samples were washed in detergent for five minutes and then rinsed with distilled water and dried. The dried samples were weighed with an analytical balance Acculab ATILON an accurate to ± 0.0001g and then were immersed in 100 ml of test solution of 1 M HCl. The system was lightly covered with parafilm. The same process was repeated at different of 1 M solutions of HNO₃, H₂SO₄, NaCl, NaNO₃ and Na₂SO₄.

The first weight loss of each coupon was determined after 4 h and after that every 192 h of exposure. The maximum period of exposure was 768 h. After immersion period the samples were cleaned by brushing them under the stream of water using a fibre-bristle brush to remove the corrosion products. Then the samples were rinsed with tap water, dried under a stream of air, and weighed. For each of the immersion period the corrosion rate (Km) of alloy were determined using the following equation:

\[K_m = \frac{m_1 - m_2}{S \times 10^{-3} \, g/m.h} \]

where \(m_1 \) is the weight of the sample, g; \(m_2 \) is the weight of the sample after the corrosion test, g; \(S \) is the area of the sample, m and \(t \) is the test time, h.

III. RESULTS AND DISCUSSION

The gravimetric technique is has proved to be useful in monitoring the corrosion of aluminium alloy in selected environments of different electrolytes. Corrosion of EN AW-2011 was detected in each of the immersion solution as indicated by the weight loss data. The results of obtained are processed by this method and presented in table (Table I and Table II).
The corrosion rate \((Km)\) derived as per equation (1), is plotted against exposure time immersed in aqueous solutions of salts (Fig. 1) and acids (Fig. 2).

Table I. Corrosion rate of aluminium alloy EN AW-2011 in 1M salt solutions

<table>
<thead>
<tr>
<th>Solution, 1M</th>
<th>4 h</th>
<th>192 h</th>
<th>384 h</th>
<th>576 h</th>
<th>768 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0.14</td>
<td>0.020</td>
<td>0.023</td>
<td>0.020</td>
<td>0.014</td>
</tr>
<tr>
<td>NaNO(_3)</td>
<td>0.09</td>
<td>0.004</td>
<td>0.020</td>
<td>0.014</td>
<td>0.013</td>
</tr>
<tr>
<td>Na(_2)SO(_4)</td>
<td>0.06</td>
<td>0.002</td>
<td>0.001</td>
<td>0.010</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Table II. Corrosion rate of aluminium alloy EN AW-2011 in 1M acid solutions

<table>
<thead>
<tr>
<th>Solution, 1M</th>
<th>4 h</th>
<th>192 h</th>
<th>384 h</th>
<th>576 h</th>
<th>768 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>0.67</td>
<td>0.16</td>
<td>0.24</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>HNO(_3)</td>
<td>0.30</td>
<td>0.26</td>
<td>0.40</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>H(_2)SO(_4)</td>
<td>0.14</td>
<td>0.27</td>
<td>0.46</td>
<td>0.45</td>
<td>0.47</td>
</tr>
</tbody>
</table>

The corrosion rate \((Km)\) derived as per equation (1), is plotted against exposure time immersed in aqueous solutions of salts (Fig. 1) and acids (Fig. 2).

EN AW-2011

- [Graph: Corrosion rate of aluminium alloy EN AW-2011 immersed in 1M salt solutions]

- [Graph: Corrosion rate of aluminium alloy EN AW-2011 immersed in 1M acid solutions]

Observation of the graphs shows as initial increase in corrosion rate of aluminium alloy EN AW-2011 with respect to time. During the first four hours of immersion in solutions of acid (HCl, HNO\(_3\), H\(_2\)SO\(_4\)) and salt (NaCl, NaNO\(_3\), and Na\(_2\)SO\(_4\)) the graphs achieve the maximum level followed by a sudden decrease in corrosion rate of aluminium alloy. This figure shows that, after 192 hours the corrosion rate increased slightly and stays constant till 768 hours of exposure in test environments.

The behaviour of this process can be attributed to the formation of the protective layer on the alloy surface and increase in corrosion rate with respect to time. Increase in corrosion rate ceases with the formation of the protective oxide layer [13]. When exposed to environment with aggressive ions this oxide layer breaks down at definite sites causing corrosion on the aluminium surface. The corrosion rate of aluminum alloys depends on the specific ions present in solution.

Solutions of most inorganic salts cause insignificant corrosion of aluminum alloys at room temperature [14]. EN AW-2011 showed better corrosion resistances in salt solutions containing sulfate (Na\(_2\)SO\(_4\)) and nitrate (NaNO\(_3\)) ions even after 768 h of immersion. It showed high corrosion rate in NaCl environment and is found the increasing trend of weight loss.

In acid solution mechanism of dissolution of aluminium and its alloys is as follows [15]:

\[
\text{Al} + \text{H}_2\text{O} \rightarrow \text{Al(OH)}(\text{ads}) + \text{H}^+ + \text{e}^-
\]

Aluminium alloys most resistant to solutions dilute in sulfuric acid and nitric acid bit hydrochloric acid solutions is definitely corrosive to this alloy. In acid solutions, chlorides greatly stimulate attack of the protective layer [14] and it showed very high corrosion rate.

Alloy EN AW-2011 showed better corrosion resistances in H\(_2\)SO\(_4\) as compared to HNO\(_3\) even after 768 h of immersion.

The results obtained in this work also showed that, in the conditions employed in the present work, the corrosion rate in solutions of acids (HCl, HNO\(_3\), H\(_2\)SO\(_4\)) was higher than of the samples immersed in solutions of salts (NaCl, NaNO\(_3\), Na\(_2\)SO\(_4\)). Furthermore, as shown in the Fig. 2 the corrosion rate of the samples immersed in 0,1M solutions of HCl showing the highest corrosion rate. This was followed by the aluminium alloy immersed in 0,1M solutions of HNO\(_3\), and H\(_2\)SO\(_4\).

Comparison of the corrosion rate of EN AW-2011 from weight loss analysis showed that the solutions of acids and salts consisting sulfate and nitrate ions are found to be less aggressive to the alloy showing relatively less corrosion rates than these consisting the chloride ions. The maximum corrosion rate in presence of chloride ions is indicative of the high penetrating power of these aggressive ions into the barrier oxide layer [16]. Nitrate ions show the moderate weight loss in presence of these acids and salts. Sulfate ion in the solution appears to impart passivity to the alloy and reduced corrosion rates. The presence of sulfate ion in the medium is probably to produce aluminium sulfates which are less soluble than the other aluminium salts formed in presence of nitrate and chloride ions and may effectively retard the surface degradation [17].

IV. CONCLUSIONS

The present study on corrosion behaviour of
aluminium alloy EN AW-2011 reveals susceptibility of corrosion in selected environments of various electrolytes of 1M HCl, HNO₃, H₂SO₄, NaCl, NaNO₃, and Na₂SO₄.

The results obtained in this work showed that, in the conditions employed in the present study, during the first hours of immersion the corrosion rate achieves the maximum level. The corrosion resistance of this alloy depends on the specific ions present in solution and is more in the acid and salt environments containing sulfate and nitrate ions than in the solutions consisting chloride ions.

V. REFERENCES