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Abstract: Paper analyses the sliding friction coefficient of rubber on concrete, timber and ceramic tile 

surfaces depending on the weight of the sliding object and contact surface area. It has been established that increase 

in the weight of the object makes sliding friction coefficient to grow. In the case of increase in size of contact area, 

sliding friction coefficient between rubber and concrete also increases, but it decreases between rubber- timber and 

rubber- tile. The mathematical model for description of sliding friction process has been developed which can be 

used to determine optimal surface area and a pattern as well as optimal weight of the sliding object in order to 

provide sufficient sliding friction. Model has five independent constants. It includes the contact surface area, the 

weight and the velocity of the sliding object, sliding friction coefficient, temperature and time. 
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Introduction 
In the design of means of conveyance, tyres, wheelchairs etc. sliding has to be eliminated. In order 

to provide good contact with main surface, materials with high sliding friction coefficient have to 

be chosen as well as optimal pattern and size of elements which provide grip on surface. These 

problems are analysed by many authors in their works, for example [1-7]. The objective of the 

paper is to develop the mathematical model describing sliding friction processes in order to 

optimize friction affecting parameters. 

 

Materials and methods  

In order to develop mathematical model, the initial experimental research has been performed. 

Rectangular plates of organic glass with size 44 42 3 mm are used as a sample. 2 mm thick 

rectangular rubber is glued to the bottom of the plate and a weight is put on top the plate. In the 

case of small contact areas instead of the layer of rubber 2 mm thick rubber strips are glued to the 

corners of the plate. The sample is steadily pulled on horizontal surface at a velocity 5±1 mm/s and 

force of friction is measured. Sliding friction coefficient is calculated: 

   
P

F
 ,    (1) 

where F – force of friction; P – total weight of weights and the sample. Each sample with the same 

loading is subjected to 10 measurements on the different locations on concrete, timber and tile 

surfaces. Materials used: 1) rubber: natural rubber NR- 55,46 %, filler K354- 27,73 %, 

vulcanisation temperature- 160 
0
C, vulcanisation time- 9 minutes, producer - Baltijas gumijas 

fabrika; 2) concrete; 3) timber plank, dry, planed; 4) ceramic tile. 

 

Experimental results 

Sliding friction coefficient depending on pressure loading P on the sliding object for different 

contact surfaces S between rubber and concrete is shown in Figure 1, between rubber and timber is 

shown in Figure 2 and between rubber and ceramic tile is shown in Figure 3. There are µ median 
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values, accidental error intervals, approximate function graphs, their mathematical expressions and 

values of coefficient of determination R
2
 shown in Figures. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Dependence of sliding friction 

coefficient between rubber and concrete 

on weight for different contact surface 

areas 

 Fig.2. Dependence of sliding friction 

coefficient between rubber and pine 

plank on weight for different contact 

surface areas 
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Examples of the dependence of sliding friction coefficient between rubber and concrete, rubber 

and timber, rubber and ceramic tile on contact surface areas are shown in Fig. 4 – 6. 

 

 

 

 

 

 

 
Fig.4. Dependence of sliding friction 

coefficient between rubber and 

concrete on contact surface area 

 

 
Fig.5. Dependence of sliding friction 

coefficient between rubber and pine 

plank on contact surface area 

 

 
Fig.6. Dependence of sliding friction 

coefficient between rubber and 

ceramic tile on contact surface area 

 

 

 

 

Fig.3. Dependence of sliding friction 

coefficient between rubber and 

ceramic tile on weight for different 

contact surface areas 
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In the experiments used rubber structure is shown in Figure 7 (got on Scanning Electron 

Microscope EVO MA15 in Tallinn University of Technology).  

 

 
Fig.7. Structure of rubber which used in the experiments 

 

Mathematical model 
 Sliding friction force F is directed on contact area opposite the motion of the sliding object; this 

force is created by chemical bonds between both objects (see Fig. 8). Friction force  

PF   ,    (2) 

where - sliding friction coefficient, P- the weight of the top object. If P increases, contact surface 

is distorted, its area becomes larger, more bonds are formed between atoms of both objects and 

mutual sliding of both objects becomes more difficult. Consequently, if P increases, friction force 

has to grow. 

 

 

 

 

 
Fig.8. Interdependent positioning of sliding surfaces and bonds between 

their atoms 

 

  
 

Fig.9. Rupture and formation of the bonds during process of sliding friction 
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Let’s replace curved surface of both objects in contact with flat surface (see Fig. 9). Let’s assume 

that: 1) the top object moves on the surface of the bottom object with constant velocity v; 2) atoms 

of both objects create cubic lattice with lattice constant d; 3) all bonds between both objects have 

the same energy values Q; 4) at time t=0, the top object coordinate x=0, bonds are not distorted, 

total number of bonds is N. Moving the top object, bonds are stretched and ruptured. When 

displacement x reaches value d/2 all bonds are ruptured. (see Fig. 9, moment in time T/2). Next 

follows the formation of new bonds which try to contract and pull the top object forward. At the 

moment in time t=T (T- period) bonds are not distorted, the top object has moved for distance d in 

relation to the bottom object. 

The performed experiments show that increase in the weight of the object causes sliding friction 

coefficient to grow. Increasing displacement value x of the top object (see Fig. 9), bonds are 

stretched further and the instantaneous value of friction force F grows. Considering the above, let’s 

assume that friction forces 
mn xPAF  ,    (3) 

where A, n, m- constants; m1;  if m=1, then bonds are only subjected to elastic distortion, when 

Fx; n1;  if n=1, then sliding friction coefficient is constant value, not dependent on P. It derives 

from equations (2) and (3) that the instantaneous value of sliding friction constant 
mn xPA  1

* .    (4) 

The graph, showing changes in the values of this parameter depending on the top object 

displacement x, is given in Figure 10. 

 

 

 

 
 

Fig.10. Instantaneous sliding friction 

coefficient depending on coordinate 

x; - median sliding friction 

coefficient 

 Fig.11. Sliding friction force depending on 

coordinate x; P- median sliding friction 

force 

 

Median value  of sliding friction coefficient and instantaneous values * are linked  

 

2/

0

*

d

dxd  .    (5) 

By putting equation (4) in this expression and doing integration, one has 

  1

1

21 








m

mn

m

dPA
 .    (6) 

If sliding friction coefficient median values 1 and 2 at two different loadings P1 and P2 are 

known, constant n can be found from equation above: 

2

1

2

1
log1





P

Pn  .    (7) 

To determine the number of bonds N at the  initial moment t=0, let’s use conditions: 1) if P=0, 

then N=0; both objects are not in contact, there are no bonds between them; 2) if P, then 

NS/d
2
, where S – area of bottom surface of the top object, d

2
 – area taken by one atom on the 

surface, the top object is pressed to the surface of bearing with such force that all its bottom 

surface atoms form bonds with atoms of the surface of bearing. These conditions are expressed in 

function 
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 PCe
d

S
N  1

2
,    (8) 

where C- constant.  

Potential deformation energy delivered to one bond Wdef is equal to total deformation energy of 

bonds divided by number of bonds N. Total deformation energy of the bonds is equal to work done 

by friction force. Therefore, considering equation (3),  

 1

1

00















mN

xPA

N

dxxPA

N

dxF

W
mn

x

mn

x

def
.     (9) 

Time period T: 1) the top object displacement x=d; 2) considering expression (9), the work of 

friction force (see Figure 11): 

 
 1

1

2








m

PA
dP

mdn

 .    (10) 

    

The displacement of the top object in a case of steady movement: 

tvx  .     (11) 

It derives from equations (8) – (11) that potential deformation energy delivered to one bond 

 
  2

1

1

2









mPC

m

def
deS

tvP
W


.    (12) 

Energy of the thermal motion, delivered to one bond: 

asilt TkW  ,     (13) 

where k- Boltzmann constant, Ta- absolute temperature. Changes in number of bonds within time 

interval dt [8]: 

  dtefZtNdN defsilt WW

Q






,   (14) 

where N(t) – number of bonds at the moment in time t; Z=6 – coordination number of cubic 

lattice; f=110
13 

Hz – oscillation frequency of atomic thermal motion; Q - bond energy; exponent 

describes probability of appearance of energetic fluctuation that would be sufficient for bond 

rupture. Considering potential deformation energy delivered to one bond and expressions of 

thermal motion energy (12) and (13), changes in number of bonds can be expressed: 

 
 

  dtefZtNdN
mPC

m

a
deS

tvP
Tk

Q













2

1

1

2

.     (15) 

Initial and final conditions for the solution of differential equation (15): 

if t=0, then    PCe
d

S
N  10

2
;     (16) 

if t=T/2, then N(T/2)=0.    (17) 

Consequently, the mathematical model describing friction processes is created. It has five 

constants C, d, n, m, Q. The model includes contact surface area S, the weight of the top object P 

as well as velocity of movement v, sliding friction coefficient µ, temperature Ta and time t. 

 

Examples of use of the model 

The model can be used to find optimal contact surface area S with given P and known µ. With 

equation (15) with different values for S velocity of the top object v is calculated. Optimal S value 

is one which matches the minimal velocity v (it means that the greatest friction is achieved).  

It is possible to find optimal pressure force P with given area S and known relation =(P). With 

equation (15) with different values for P velocity of the top object v is calculated. It derives from 

(15) that the greatest sliding friction (v0) will be reached if P. Infiniti force can not be 

considered optimal. Therefore force P, at which velocity preset limit, e.g. 0.1mm/s, is reached, can 

be considered optimal.  
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The model can be used to optimise a pattern of tyre tread. In this case 1) contact surface has to be 

divided in small elements S; 2) mechanical tension field for each S has to be calculated, e.g. 

with multiphysics modeling software Comsol; 3) median pressure force P on each element has to 

be calculated; 4) with equation (15) sliding velocity v for each element S is found. As all area 

elements S are connected and do not mutually move, it can be assumed that sliding will start 

when element with least velocity will exceed critical velocity value, e.g. 0.1 mm/s. Tyre tread has 

optimal pattern in case when minimal velocity values v are obtained. 

 

Conclusion 

The dependence of sliding friction coefficient on pressure force for contact surfaces areas between 

rubber and concrete, timber as well as ceramic tile is investigated.  

The mathematical model, describing sliding friction process that allows searching for the optimal 

values of contact areas and weight, as well as searching for the optimal pattern of contact surface 

in order to provide the maximum sliding friction, is developed. 
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