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Abstract

There are well-known different numerical methods for solving the boundary value problems for partial
differential equations. Some of them are: finite difference method (FDM), finite element method (FEM),
boundary element methods (BEM), and others. In the given work two methods FDM and BEM for the
mathematical model of stationary distribution of heat in the multilayer media are considered. These methods
were used for the reduction of the two-dimensional heat transfer problem described by a partial differential
equation to a boundary — value problem for a system of ordinary differential equations. (ODEs). Such a
procedure allows obtaining simple engineering algorithms for solving heat transfer equation in mulyilayer
domain. In the case of three layers the system of ODEs is possible for solving analytically..

Keywords: Poisson’s type partial differential equation, two dimensional heat transfer problem.

Mathematical model
We will consider the partial differential equation of Poisso™n type
a(1ouloy)loy +a(aouléz)l 6z = —q(z, y) (1.1),

where A is the coefficient of heat conductivity (W /m-K), q is the function of the thermal
sources(W /m?), (z,y) are the 2 — D space coordinates in the space (m), u=u(z,y) is the
absolute temperature (K ). Multilayer media Q in the z - direction, which consists of N
layers QQ = {(z, y):zeQ, K =1, N: y €[0, L]}, where each layer is characterized by set
Q= {(z, V):z.,<2<7,k=1LN;ye[0, L]}, and z =2z, k=1 N —1 are the joint of the layers
(the interior grid points in the FDM), y=0,y=L,z=0,z=1z, are the surfaces on the
rectangle domain.

If every layer has parameters of A,,q,, then the equation (1.1) can be presented in the

form of o\, u, /éz)ioz=F k=1N, (1.2)

where F, = —8(26u/8y)/8y—qk (z,y), u, =u,(z,y) isthe temperature in the layer Q, .
We have the following conditions:

1) conditions of a continuity on interior surfaces z=z,,k =1, N —-1:

U (2, Y) = Ua (24, ), 40U, (2, Y)/ 0z = A4 10U, 4 (24, )] OZ,

2) boundary conditions on the surfaces z=0 and z =z, in the form of

{/llaul(zo’ y)/ oz _al(ul(ZO’ y) _‘90): 0
Aou, (zy,Y) 0 -ay (UN (zy,Y) -0y ): 0

where a,,a, are convective heat transfer coefficients, 6, 6, , u®(z) are the dimensionless

temperatures of air.

(1.3)
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3) boundary conditions on the surfaces y =0 and y =L in the form

ou(z,0)/6y =0- the symmetry condition, u(z,L)=u®(z) - the given temperature or
ou(z,L)/oy =0 - inthe 1-D case.

Method of finite volumes and fdm
Using a method of finite volumes [1-4], we would find the finite- difference scheme of
N +1 equations on a joint of layers in the form

ﬂ‘llhl(ul _uo)_al(uo _90): Ry
ﬂ‘k+1/hk+l(uk+1 _uk)_/lk /hk(uk _Hk—l): R +R¢ (2.1)
—ay (UN -0y )_/’i’N Ihy (UN _uN—l): Ry

where k =1,N -1, Rk‘zlk‘+§k‘, Rk*:lk*+§k*,

~ A% . _
R, :—h—k J‘(Z_Zk—l)"k(z! y)dz, k=1 N,

K 74
ﬁl:— == Akﬂ J.(Zk+1 - Z):jk+1(z! y)d21 k= 01 N _1;
k+1 Zy
2 —
Uk(ziy)zau;f(yz’y)l hk:Zk_Zk_la k:l,N’
1 __
Ik :_h_ J.(Z _Zk—lhk(z' y)dzl k :11 N ]
K 74
. 1 Z
Ik :_h_ v"(ZkJrl - thﬂ(zi Y)dzl k :O| N _1-
K+l z,

We have the the exact 1-D difference scheme for given functions R, , R, from (2.1).

Bem and the finite-difference scheme
The finite difference scheme (2.1) can be obtained by using the BEM. Using this
method for equation (1.2) in the segment [z, ,,z,], we multiply the equation with the

function w(z, &) =|z - &, & €[z, z,] and partially integrate two times:

Ay J'ukw”dz = IFdez + AP, (3.1)

ow
where P, =(u W —u;w)* |, w'=—
k ( k k XZH oz

Due to W' =sign(z—-¢&), w'=6(z—-¢&) (the Dirac-delta function) we obtain the third

Green formula for the 1-D case:

Z

AU (S y) = J.

Iy

9 soeeee

z—¢|Rwdz + 4P, (3.2)
where

P. =V, (z,)sign(z, —&) -V, (Zk)|zk - §| -V (z, =Dsign(z,, — &) +

Vi (Zk—l)|zk—1 —§|, v (z,)=u.(z,Y).
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For the given values v, (z,),v, (2, ,), Vi (z,), V¢ (2, ,), F, it is possible from (3.2) to find
V(&) =u, (&, y) forall & elz,,,z,].

Let us consider two limit cases, when & — z, , and & — z, . Then we have 2 equations
for BEM in the following form:
{ﬂm(zk_l) = 2 (2) = hvi(2))+ h Ry

, + @3
AN (2,) = A (Vk (z,4) + vy (Zk—l))+ hR,.

After substituting k by k+1 in second equation (3.3), then dividing this expressions
respectively by h.,h., and applying the conditions of  continuity
Vo (2) =V (2 ), ANV (Z) = A, Vi (z), k=1L, N—1 we obtain the difference equations
(2.1) for k=1,N -1, (v, (z,) =U,,V, (Ze,) =U 4, Vis (Z,.1) = U,., ). The first equation of (2.1)
is obtained from the second equation (3.3), if k=1, (vl(zl)zul,vl(zo)=u0), but the last
equation - from first equation (3.3), if k=N, (v, (zy_) = Uy_,,Vy (zy) = Uy ), (the boundary
conditions (1.3) must be used).

We can obtain the values u, ,,u,,k =1, N from the finite difference scheme (2.1), but
from (3.3) — the values v, (z, ,), Vv, (z,) in the grid points

V|'< (Zk—l) = (Vk (Zk) —Vy (Zk—l))ﬂ;l - ]v;lR;:l, k= ]-,_N )
Vi (Z4) :(Vk (2) — vy (Zk—l))ﬂ’;l + 4 R, K =1N. (3.4)

Then in the interior points of Q we have
U, (z.y) = P(z.y) +0%0, (&,Y)/ &2*0* (2), k =L N,
where 2,¢ €[z, ,,2,], @*(2)=(z-2,)(z-2, )" =0(h¢),
P (2, Y) = Uy (Vs (2) + Ui (21, Y (2) + U (V)0 (2) + U (2, Y15 (2), (3.5)
l,,(2) = (Z — % )2(22 +Z, _3Zk—1)/ hk3 (7)) = (Z —Z )2 (Z - Zkfl)/ he.
l,,(2) = (Z - Zkfl)z (3Zk Ly~ 22)/ hkSv l,,(2) = (Z - Zk—l)z(z —Z )/ hk2 '
This is the Hermite interpolation polynomial in the Z -direction for solving the
temperature in other interior points of Q, u,(z,y) =P.(z,y).

For solving the loss of heat on the walls, we can calculate the heat flux functions
au(o y) [ ou(zy, )
W, Alj dy, _leTdy (3.6)

on the boundarles z=0and z=12,
where ou(0, y)/ oz =u;(0, y)ou ,ou(z,,y)/ 0z =uy (z,,y)ou.

Approximation of integrals
The value of integrals R, R, is possible to find approximately with the help of

kvadrature formulas of a different sort in a 2-D case and after rejection of residual members
we find the system of N +1 ODEs of the second order [1-3]:
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= 230y [(2/3)00 (y) + @/ 8)0, (V)] = (A /1y )(uy (y) = U (¥)) = e, (U (¥) = 6)— I
= 2 [ 8)ti s (v) + @/ 3)0, ()] = Ashu[(W3)T, (y) + (L1 6)tis (V)] =
= (/Ik+1/hk+1)(uk+1(y) — Uy (y))_ (4 1hy )(Uk (y) _kal(Y))_ =1, k=LN-1,
— Anhy [(1/6)UN—1(Y) +(1/3)uy (Y)] = Ay Ihy (UN (y)- UN—1(Y))_aN (UN (y) -0, )_ Iy,
where U, (Y) = U, (Z,_5, Y), U (Y) = U, (2, Y) .
Here the continuity conditions of functions u, (z,y), U,(z,y) on a joint of layers are

used.
Distribution of boundary temperature at y=L we find under the linear law

u®(z) = Bz +C, coordinating it with the boundary conditions (1.3). Thus we find the system
of two algebraic equations for the determination of constants B,C in the form
B= (alaN (‘9N _‘90))/(0‘1(11\1 +ayzy )+aNﬂ“l)1C =0, + (ﬂ’l /al)B :

From Dirichlet boundary conditions we obtain B=(8, —6,)/z,,C =6,. Then the
boundary conditions of the system (4.1) can be presented in the form
U, (0)=0,u, (L) =u®(z,),k =0,N.

(4.1)

Analytical solution and numerical results
Let’s consider numerical experiments, with a caseN =3, g, =g, =0, g, =500W /m?,

o, =a; =<, U,(y)=6,, u;(y)=2, at the following values of parameters (in the wall of a
house consisting of three layers: brick, metal, brick): h,=h, =0.4m, h,=02m - the
thickness of layers, 1 =1.5m - the half of the width of the metal — layer, L =2m - the half of
the width of the wall, 2, =4, =1.0W/m-K, 4, =50W/m-K, §,=20K, 6, =250K -
the air temperatures in Kelvin degree (Fig. 1.).

ty5 (V) &

hrick
() m} _ | _77
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[T | / ]
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L J

Fig. 1. The wall of a house consisting of three layers: brick, metal, brick
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In this case we have the system (4.1) of two ODEs in following form:

=2 AR ()~ Ay (- 20,0)+ 85 () = 2 (0, ()~ (9) 2 () - 05)- 17
- hy 0,(3) + 20, (1) - A (9) -
= ﬁ(&g —uz(y))—%(uz(y) —u,(y))- 15,

(5.1)
wherel =1, = _%Izhzl u;(0)-u;(0)=0,ye(O,L), u (L) = (93h1 +90(h1 + hz))(Zhl + hz)_l’

u, (L) =(8,h, +6,(h, +h, ) 2h, +h, )™ orin the 1-D case u, (L) =u,(L) =0.

It is possible to obtain the solution of boundary — value problem (5.1) (if g, =q,(y) #0
y €[0,1]1 < L) in the form
u, (y) =C,ch(y) + C,ch(u,y) +d,, u,(y) =C,ch(yyy) —C,ch(u,y) +d,, (5.2)
where s, = (64, /(hy (220, +34,0,)) , s = ((6(2,h, + by ) (hyh, (270, + 251, ),
a, =Ah*'+ 4,0, b, =-4,h", ¢, = 4,h'0, +0.50,h,, ¢, = A,h,*0, +0.5q,h,,
Co :a22 _b22 :ﬂlzh1 +22122(hlh2)7l’
dl = (azcl - bzcz )C(;ll dz = (azcz - bzcl)c(;l’ Cz = _(dl + dz - Ul(l—) - Uz(L))/(ZCh(ﬂlL))’
C, =—(d, —d, —uy (L) +u, (L))/(2ch(4,L)) (5.3)

If u,(L)=u,(L)=0 (the 1-D case), then C,=C,=0 and

u,(y)=d, = (pzeo + plgfi)/ p; +Q,
u,(y)=d, =(p,8, + p,6,)/ p, +Q,  wherep, = AL,h, =20, p, =Ah, + 1,h, =20.2,
P; =P+ P, =40.2,

Q =%q2h2hllﬂ1 = 20. Therefore, u, =270.1+Q =290.1,u, = 268.8+Q = 2838.8.

It is possible to obtain the solution of boundary — value problem (5.1) (if g, =0,

A, = A, yell,L]) in the form
{Uf(y)=Cl’Sh(ufy)+C50h(u£y)+C3'5h(u3'Y)+C50h(u§>/)+d£
u; (y) =Crsh(eyy) + Ceh(sy y) —Cish(uzy) = Cheh(ugy) +d;
where, = (6/(h(2h, +3n, )z, w3 =(6/(04,):, a; =il +ht), by =-aht,
=27 +2hh,)), o =ahte,,  c=ahte,  df=(ae —biei ket

(5.4)

Hy

° o _ o o o o\ — /1. + ° .
d; :(azcz —b;c; )(Co) 11¢k = Al'uk k=13, d; :(1/2)(d1_d1 +d, _dz) '

d; =@/2)(d, -d; —d, +d;),
A = ch(aheh((L =1 )+ gsh(uDsh((L -1 ),
A, = ch(ugl)ch((L = 1) )+ gssh(ugl)sh((L - 1) 5 ),

363
ISBN 9984 — 585 -68 -9



Environment. Technology. Resources. 2003

C, = (1/2A \u (L) +u, (L) — 2d; ch(L ~ 1)z )-d; —d3),
C, = (1/2A \u (L) ~u, (L)~ 2d, ch((L ~ )3 )~ d; +d3), (55)
C; = —d; sh(u;1) + C, (fish (a1 )ch(u1) — ch(zg)sh(usl1)),
C
C
C

; = d;'ch(u1) + C,(goh(ul)ch(u1) - gish(s)sh(1)),
3 = —d; sh(us1) + C, (ssh(us)eh(zs1) — ch(usl)sh(u31) ),
: = d;ch(u1) + C, (ch(ush)eh(u31) - dyeh(usDsh(uy)).
In calculations d;’, d; under formulas (5.3),at y e (I,L) (I <L) loss of significant
figures was observed, for example, at g, =500, y =1.8 we find u,(y) = 278.256305 (at
calculation using up to 20 significant figures), u, (y) = 278.2 (at calculation using up to 15

significant figures), u,(y) =304 (at calculation using up to 12 significant figures - it is
visible, that all received figures are incorrect). Therefore it is more expedient to use formulas

u; (y) = dyeh((y =D )+ dyeh((y =13 )+ C,A (Y) + C, A (y) + 45
u; (y) = dyeh((y =D )—d eh((y =15 )+ C, A (Y) — C, A (y) +d;,
where A, (y) = ch(ul)ch((y 1) 25 )+ AQsh(s)sh((y - 1)),
A, (y) = ch(ugheh((y = )5 )+ A2 sh(ulysh(y — 1) 3 ), instead of (5.4).
If 1=L, & =u, p; =u,, then the constants C,,C, from (5.5) are equal C,, C,

from (5.3) and we can use only formulas(5.2). In the interior points we can used the
interpolatioin with cubic polinomials (3.5), where

ull(ox Y) = (ul(y) - 90 )hfl + (hl/G)Bl(y) ) ull(zp Y) = (ul(y) - 90 )h{l - (hl /3)Bl(y) )
U3 (2,,Y) = (U, (¥) —u ()h;* +(h, /6)(2B, (y) + B, (¥))+ (a;h,) /(2h,),
U3 (2,,Y) = (U, () —u (V) — (h, /6)(B, (y) + 2B, (y)) - (a,h,) /(2h,),
uz(z,,y) = (‘93 —U, (y))hs_l +(h; 13)B,(y), ui(z;,y) = (93 - Uz(Y))hs_l —(h;/6)B,(y), (5.6)
B, (y) = C,u’ch(zyy) + C uzich(usy) , B, (y) = C,uich(ayy) — C pch(usy) .
If I <L, then for y > L in the formulas (5.6) the functions B,, B, can be replaced with
B/, B;,and u,,u, with u;/,u;, where
By =d; (u)?ch((y — D )+ dy () 2eh((y — 1) a3 )+ C, (ua)? A (Y) +Cy (113) 2 Ay(Y)
B; =d, (i) ch((y 1) )~ d; (u)2eh((y = a3 )+ C, (11)? A (Y) = C (15)° A (Y).
For the flux functions on the borders (3.6) we obtain
W, = 4, (W2 + W@ ), W, = 4, WS +w®), (5.7)
where

Wo(l) = _I[u{(oa y)dy = Ihl_l(dl _90)+C2K1 +C Ky,
0

Ws(l) = ju{(o, y)dy = |h3_1(6’3 _dZ)_CZKl +C4K3 '
0

W2 = Ijul'(o, y)dy = (L—-1h*(d; -6, )+d;K; +d; K] +C,D, +C,D;,
0

Ws(Z) :_i‘ui(oi y)dy=(|-_|)h3_l(93 _dz.)_lerKl. +d1_K3: -C,D, +C,Ds,
0
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where K, =sh (ﬂll)[(h1ﬂ1 )_l +hyy /6], K; = Sh(lusl)l(hlﬂs )71 +hy 1, /6J’

K; = sh((L =1 Nusas )+ g 6], K = shl(L =130 N ) + g 6
D, = ch(u)K; + A9sh(zl)(eh((L 145 )-1)K?,
D, = ch(u;1)K; + 22sh(u,)(eh((L 1) )- 1)K S,
KY = (b )" +hys 16, KS =(hyuss) "+ s /6.
If 1=L, u(L)=u,(L)=0 (1-D case), then C,=C, =0, W2 =W =0 and
u(0) =u/(z,) = (0, =0, )4, I py + Qy / A, =—49.75 + Q,,
uy(z,) =60, —6,)A, 1 ps +Q, /1, = -1+0.02Q,,
uy(z,) =6, —6,)4, 1 p; —Q, /1, =-1-0.02Q,,
u(z,) =ui(zy) = (0, =0, )4, 1 ps —Q, / A, = —49.75 - 0.02Q,,
where p, =2h4, +h,4, =40.2, Q, =(q,h,)/2=50.
Therefore W, = L[(0, —0,)A, 4, / p, +Q, | = L(-49.75+Q, ), W, = L(-49.75-Q, ).
We see, that at heating an average layer, loss of heat inside a house are practically equal

to zero. Calculations were made by means of mathematical computer-system MAPLE-5, in
the Table 1, Figure 2 we can see the dependence of temperature u,.(y) =u(h,/2,y),

ul(y) :u(hl’ y) lul.S(y) = u(hl +h2 12, Y)1 uz(Y) =U(Zz, Y)’ uz.s(Y) = U(Zz +h3/21 y)

(z, =h, +h,) on the coordinate y e (0, L) with. g, =500W /m®. We have, W, = -23.68 ,.
W, =-171.83. If I=L and u,(L) =u,(L) =0, thenu,, = (u, +6,)/2~280+Q/2,

u, =270.1+Q, u,, =(u, +u,)/2+0.005h,Q,, u, = 268.8+Q,

Uys = (U, +6,)/2~260 +Q/2, Q =20, Q, =50

Table 1.

Depending on temperatures with q, = 500%, Uy, =6, =290°K, u, =6, =250°K

y u0.5 ul u1.5 u2 u2.5

0 288.77 287.57 287.51 287.37 268.67
0.2 288.76 287.54 287.49 287.34 268.66
0.4 288.72 287.47 287.41 287.27 268.62
0.6 288.66 287.34 287.28 287.14 268.56
0.8 288.57 287.16 287.10 286.96 268.47
1.0 288.45 286.92 286.87 286.72 268.35
1.2 288.30 286.62 286.57 286.42 268.19
1.4 288.16 286.27 286.20 286.04 267.96
1.6 286.72 283.47 281.67 278.68 266.73
1.8 284.41 278.26 174.77 270.81 261.10
2.0 282.00 274.00 270.00 266.00 258.00
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2854
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2851 1y (Y)
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Fig. 2. Depending on temperatures with g, = SOOﬂ3 :
m

Uy =6, =290°K, u, =60, =250°K , | =1.0m

Conclusion

In the given paper the used method allows to reduce a two-dimensional heat transfer
problem to the system of the ordinary differential equations (5.3), solution of both it is easier
to make theoretically and practically.

The considered method allows finding distribution of temperatures depending on the
second coordinate on a joint of layers.
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