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Abstract. The investigation of motion and gravitational processing of disperse granular materials is very important for 

solution of a wide spectrum of technological processes, including the chemical technology of treatment (with or without 
the decoration-compression procedure) of granular mineral fertilizers and their drying and sorting/separation by means 
of vibrating sieve classifying screens, in particular. In this work, we have used the apparatus of the theory of continuous 
media for the mathematical modelling of dynamics of disperse granular materials, and by this we assume that a property 
of these materials is the distribution of a solid granular component inside of them. The elaborated mathematical model is 
based on the volume conservation law for granular components, on the momentum conservation law, as well as on the 
equations for stress tensor in the granular mineral fertilizers and equations for description of the Coulomb granular 
mineral fertilizers.  
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I. INTRODUCTION 
The investigation of the motion and mechanics of 

the gravitational processing of disperse granular 
materials is important for solution of a wide spectrum 
of technological processes, including the chemical 
technology of treatment (with or without the 
decoration-compression procedure) of granular 
mineral fertilizers and their drying and 
sorting/separation by means of vibrating sieve 
classifying screens, in particular. Apart from 
technological processes of different kind, the 
investigation of dynamics of disperse granular media 
is extremely important for solution of such problems 
as mineral extraction, engineering, geology – the 
motion and erosion of soils, in particular, and so on 
(for instance, see [1]-[7] and the references therein). 
Currently, there exist two methods for mathematical 
modelling of the dynamics of disperse granular 
materials: the first method – this is the consideration 
of disperse granular media on the level of separate 
unconnected, but interacting particles ([5], [7]); the 
second method – this is the consideration of this 
media from the point of view of continuum 
mechanics ([3], [4], [6]). When the first method of 
modelling is used, the flux of finite-size particles is 
considered, these particles being represented as rigid 
or elastic geometric figures, e.g., spheres, and it is 

attempted to derive rules, describing the behaviour of 
the particle flux as a whole. Significant contributions 
to the theory of dynamics of disperse granular media 
have been provided in foreign works (see [8]-[15]) by 
Reynolds O., Faraday M., Deresiewicz H., Rowe 
P.W. and Winterkorn H.F., where problems related to 
artificially excited vibrations, as well as questions of 
different kind concerning the natural sand flow, have 
been investigated. Despite of these and other results 
and their interpretations, which have been obtained 
by experts in different fields in framework of the first 
method of modelling, up to now the mechanism of 
motion of disperse granular media have not provided 
a satisfactory explanation of many unusual 
phenomena, arising in motion of such media. When 
the second method of modelling is used, it is assumed 
that the properties of particle flux, considered as 
continuum, can be represented by continuous 
functions, in such way that any infinitesimal part of 
disperse granular medium has properties of each 
separate particle. For example, those mathematical 
models, which use the apparatus of plasticity theory, 
are based on criteria of Coulomb-Mohr fluidity; those 
mathematical models, which use the apparatus of the 
theory of fluidized boiling beds, are based on 
thermodynamic principles for particle distribution in 
bulk, and so on. In this work, the apparatus of 
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continuum mechanics we will use for elaboration of 
corresponding mathematical models, describing the 
dynamics of disperse granular materials.  

 
II. MATHEMATICAL  MODELLING 

A. The volume conservation law for granular 
components and the momentum conservation law 

As it was stated in the introduction, we will 
investigate the dynamics of disperse granular media 
in gravitational flows from the point of view of 
continuum mechanics and, hence, we can state that 
the property of a disperse granular material is the 
presence of solid granular component, distributed 
inside of it. Therefore, to take into account the 
distribution of solid phase in bulk of a continuous 

granular body (we denote this body by solidD ), we 

have to introduce the bulk distribution function 

( ), , ; ,U U x y z t=  which is a kinematic variable and 

is continuously defined in the whole region occupied 
by the body. This function can be interpreted as the 
porosity, i.e. as the volume fraction of empty spaces 
(relative free volume), although in reality it is the 
inverse of this volume fraction. The introduced here 

function ( ), , ;U x y z t  can be defined as 

( ) ( ), , ; 1 , , ; ,U x y z t x y z t= −Π  where ( ), , ;x y z tΠ  

denotes the porosity. Obviously, the volume of the 

granular components in the body solidD  can be 

defined by the formula 
 

( ) ( )
solid

granule , , ; .
def

D

V t U x y z t dv≡ ∫            (1) 

 
Introducing the notion of mass density 

( ), , ;W x y z t  of granular components, we can 

determine the total mass granuleM  of granular 

components in the body solidD  by the formula 

 

( ) ( ) ( )
solid

granule , , ; , , ; ,
def

D

M t U x y z t W x y z t dv≡ ⋅∫      (2) 

 

where ( ) ( ) ( )v.d. , , ; , , ; , , ;
def

x y z t U x y z t W x y z tρ ≡ ⋅  is the 

volume density of the investigated disperse granular 
medium. Further on, since we consider the 
investigated disperse medium as a continuous media, 
the mass of the interpore space in the body solidD  is 

negligibly small. Consequently, the total mass 

( )granuleM t  of the granular components can be 

considered as the total mass of the granular material 
and, therefore, the following continuity equation for 
the considered granular material can obtained from 
the equation (2):  

 
( ) ( ) ( )( )v.d.

v.d.

, , ;
, , ; , , ; ,

x y z t
x y z t div x y z t

t

ρ
ρ ϑ

∂
= −

∂

�
 (3) 

 

where ( ), , ;x y z tϑ ϑ=
� �

 is the spatial vector of the 

velocity with three Cartesian components ,xϑ  ,yϑ  

;zϑ  and ( )( ), , ;div x y z tϑ
�

 is the divergence of the 

vector field .ϑ
�

 
Remark 1. If the granular components (in our case 

the granular mineral fertilizers) of the body solidD  are 
incompressible, then mathematically it means that 

( ), , ;
0

W x y z t

t

∂
=

∂
 holds. Consequently, in this case 

the equation  
 

( ) ( ) ( )( ), , ;
, , ; , , ; ,

U x y z t
U x y z t div x y z t

t
ϑ

∂
= − ⋅

∂

�
 (4) 

 
which describes the volume conservation law for the 
granular components in the body solid,D  must be used 
instead of (3). 

It has to be noted that the conservation law (4) can 
be derived directly from (1). In addition, it is 
important to notice that, although the volume of 
granular components is constant, the total volume 
needs not to be constant, i.e. the total volume can be 
varied: the positive/negative dilatancy (it is the 
increase or decrease of the volume at shear 
deformation) can serve as a natural example in 
disperse systems of high concentrations, for example, 
in natural fertilizers. Consequently, in equation (4), as 

well as in equation (3), ( )div ϑ
�

 needs not to be zero. 

Further on, since the total mass of granular mineral 
fertilizers is calculated from (2), we can write the 
momentum conservation law in the form of 

 

 ( ) ( ) ( )( )v.d.

, , ;
, , ; , ,

x y z t
x y z t F div x y z

t

ϑ
ρ σ

 ∂
⋅ − =  ∂ 

�
� �

 (5) 

 
or componentwise in the form of  

( ) ( )
v.d. ,

, , ;
, , ; ,i

i ij j

x y z t
x y z t F

t

ϑ
ρ σ

∂ 
⋅ − = 

∂ 
 

where σ
�

 is the Cauchy stress tensor with nine direct 

and tangential stresses 11,xxσ σ= 12,xyσ σ=

13,xzσ σ= 21,yxσ σ= 22,yyσ σ= 23,yzσ σ= 31,zxσ σ=

32,zyσ σ= 33;zzσ σ= F
�

 is the vector of mass forces 

with Cartesian components 1,xF F= 2,yF F= 3;zF F=  

and the covariant derivative is expressed by ,ij jσ .  
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B. Equation for the stress tensor in granular 
mineral fertilizers 

In this subsection, we will consider stresses in the 
case of non-dissipative granular medium, as well as 
in the case, where this media is dissipative, i.e. when 
the energy of ordered macroscopic motions or fields 
transforms irreversibly into the energy of disordered 
(i.e. chaotic) motions or fields. Let us assume that 

specific Helmholtz free energy H.f.e.A  of granular 

mineral fertilizers depends on the bulk distribution 

function ( ), , ;U x y z t  and on its time derivative, as 

well as on the density of granular components of the 

body solidD  and temperature ,T  i.e. 

H.f.e. H.f.e. v.d., , , .
U

A A U T
t

ρ
∂ =  ∂ 

 We can now 

introduce from thermodynamic considerations the 
following dynamic quantities:  

− pressure m.p.P  of the investigated disperse granular 

media : 
 

2 H.f.e.
m.p. ;

def A
P U W

W

∂
≡ ⋅ ⋅

∂
              (6) 

 

− spatial pressure s.p.,P  which is related to the 

distribution of granular components in the bulk: 
 

2 H.f.e.
s.p. ;

def A
P U W

U

∂
≡ ⋅ ⋅

∂
               (7) 

 

− effort vector e.v.,f
�

 which is the vector of the 

balancing stress (as it is related to the system of 
self-balancing forces, applied either at the 
pressure centre or shift centre; see e.g. [1]): 
 

H.f.e.
e.v. .

def A
f U W

U

∂
≡ ⋅ ⋅

∂

�
               (8) 

 
Then, from thermodynamic considerations, we can 

write 
 

( )m.p. e.v. s.p. m.p..
def

P U div f P P≡ ⋅ = −
�

        (9) 

 
Equation (9) is a fundamental equation and, being 

determined by expressions (6)-(8), the dynamical 

quantities m.p.,P  s.p.,P  e.v.f
�

 characterize just the non-

dissipative part of the stress  
 

( ) ( )*
e.v. s.p. e.v. ,

def

U div f P I f grad Uσ ≡ ⋅ − ⋅ − ⊗
� ���   (10) 

 
where the symbol ⊗  means the tensor product; the 
spatial gradient of the scalar function 

( ), , ;U U x y z t=  is denoted by ( ).grad U  It follows 

from the equation (10) and expressions (6)-(8) that 
the stress is completely determined by Helmholtz 
energy function in the non-dissipative case: this fact 
is analogous to the corresponding relation for the 
equilibrium stress in compressible fluids.  

Now, in order to determine the dissipative part of 
the stress in granular mineral fertilizers, we will use 
the corresponding equation from the theory of 
viscous liquid: 

 

( )*
1 s-r.t. 2 s-r.t.2 ,tr Iσ σ ν ϑ ν ϑ− = +

�� �
        (11) 

 

where s-r.t.ϑ  is the strain-rate tensor, determined as the 

symmetrical part of the spatial gradient of velocities; 

the notion ( )s-r.t.tr ϑ  means the trace of the tensor 

s-r.t.ϑ  of the second rank (one time covariant rank and 

one time contravariant rank); quantities 

( )1 1 ,U Wν ν=  and ( )2 2 ,U Wν ν=  are viscosity 

coefficients. 
C.  Equation for the description of Coulomb 
granular mineral fertilizers 

The obtained in the previous subsection equation 
(10) is the general equation for the non-dissipative 
part of the stress, and just because of this general 
form it cannot be used for solution of the actual 
problem: precise expressions are necessary for 

pressures m.p.P  and s.p.,P  as well as for the balancing 

vector of stresses e.v..f
�

 In this section, the required 

expressions will be obtained. For this purpose, we 
will assume that specific Helmholtz energy per unit 
volume H.f.e.U W A⋅ ⋅  is an isotropic function ( i.e. it is 

a tensor function, the symmetry group of which 
agrees with complete orthogonal group; tensor 
function – it is a mapping, relating several tensors of 
different ranks to one tensor of certain rank), which 
can be expanded in Taylor series in vicinity of 

( )
l.d.

0,
U U

grad U
=

=  where l.d.U  is the limiting 

distribution in bulk, which corresponds to the limiting 
relative fraction of empty spaces in granular mineral 
fertilizers (the limiting relative fraction of empty 
spaces in granular mineral fertilizers corresponds to 
such a state, where volume does not change under 
shear action; some kinds of granular mineral 
fertilizers, having larger or smaller relative fraction of 
empty spaces as compared to its critical value, 
correspondingly decrease or increase their volume 
under the shear action, see Remark 1). In addition, we 

assume that the deviation of ( )grad U  from zero 

and the deviation of quantity U  from l.d.U  is 

negligibly small. Consequently, within accuracy up to 
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terms of the third and higher orders of smallness we 

can expand the function H.f.e.U W A⋅ ⋅  as follows: 

( )
2

H.f.e. l.d.
0

i

i
i

U W A c U U
=

⋅ ⋅ = ⋅ − +∑  

( ) ( )3 l.d. ,c grad U grad U⋅ ⋅               (12) 

 

where ( )l.d., , 1,3.i ic c U U i= =  

In view of the natural requirements of 

positiveness of the Helmholtz energy H.f.e.U W A⋅ ⋅  per 

unit volume and of its minimum at the condition 

( )
l.d.

0,
U U

grad U
=

=  we can write down the following 

restrictions for the coefficients , 0,3:ic i =  

 

1 0,c =  { }0, 0,2,3 .ic i≥ ∈          (13) 

 
Now, substituting the expansion (12) with 

coefficients (13) into expressions (6)-(8), we obtain: 
 

( )( )2 0
m.p. 0,P W grad U W

W W

ξξ
ξ ξ

∂∂ = ⋅ − ⋅ + ⋅ − ∂ ∂ 
   (14) 

( )( )22
s.p. 0 ,P U grad Uη η ξ= − + ⋅ − ⋅         (15) 

( )e.v. 2 ,f grad Uξ= ⋅ ⋅
�

                    (16) 

 
where the following notations are used: 
 

( )2

0 0 2 l.d.

2
0 0 2 l.d.

3 2

,

,

, .

c c U U

c c U

c c

ξ

η

ξ η

= + ⋅ −


= + ⋅ 
= = 

             (17) 

 
Equation (10) for the stress in non-dissipative 

situation together with equations (14) and (16) 
require that non-dissipative direct and tangential 
stresses, which act on certain area at some point, have 
a special mutual relation. Note that in the 
hydrostatics, where the tangential stress must be 
completely absent, a similar result takes place.  

At non-dissipativeness of the considered granular 
media, the tangential stress has a characteristic 
nonzero value, which is related to the value of the 
direct stress. In order to establish this relation 
mathematically, we will consider an arbitrarily 
chosen and fixed spatial point and an arbitrary fixed 

plane with the normal out.n
�

 Taking into account the 

equations (10) and (16), the direct stress ,σ
�

 acting on 
the fixed plane, is calculated by the following 
formula: 

 

( ) ( )( )*
m.p. 2 .n n P grad U nσ σ ξ= ⋅ ⋅ = − − ⋅ ⋅ ⋅

� � � � �
 (18) 

The determined by formula (18) direct stress σ
�

 is 

related to the tangential stress tang.,σ
�

 acting on the 

same area, by the following rule: 
 

( )22 2 * 2
tang. m.p.n Pσ σ σ+ = ⋅ = +

� � � �
 

( )( )2

m.p.4 P grad U nξ⋅ ⋅ ⋅ ⋅ +
�

 

( )( ) ( )( )2 224 .grad U grad U nξ⋅ ⋅ ⋅ ⋅
�

 (19) 

 
Now, using expressions (18) for exclusion of the 

term ( )( )2
grad U n⋅

�
 in equation (19) and keeping 

squares in the final expression, we obtain the 
following relation: 

 

( )22 2
tang. ,rσ σ ω+ − =
� �

             (20) 

 
with the introduced here notations 
 

( )( )2
,

def

r grad Uξ≡ ⋅  
m.p. .

def

P rω ≡ − −   (21) 

 
Further on, taking into account equation (14), the 

second relation in (21) for the pressure m.p.P  takes the 

following form: 
 

( ) ,r λ β ω= ⋅ −                (22) 

1
,

def W

W

ξ
λ ξ

∂
≡ ⋅

∂
 0

0 .W
W

ξ
β ξ

∂
= − ⋅

∂
 (23) 

 
Finally, comparing the expressions (20) and (22), 

we will find the required relation between the 

tangential stress tang.σ
�

 and the direct stress ,σ
�

 acting 

on the considered area in the given point of granular 
mineral fertilizers in the state of non-dissipativeness.  

Remark 2. If σ
�

 and tang.σ
�

 are considered as 

Cartesian coordinates, then the equation (20) 

represents a circle with centre at the point ( )0,ω  and 

radius .r  Besides, the requirement that the radius of 
this circle must be a function of the shift of its centre 
from the origin of the coordinate system follows from 
equation (22), which has been obtained from (20), 
taking into account (14). If equation (22) is chosen as 
the necessary and sufficient condition of the non-
dissipativeness of the media, then this result can be 
considered as a generalization of the Coulomb 
condition on stresses at the limiting equilibrium in 
granular mineral fertilizers, in which the angles of 
internal friction and bonding are functions of density 
W  and bulk distribution function .U  Finally, note 
that in the case if quantities λ  and ,β  determined by 
formulas (23), are constant, equation (22) becomes an 
equation of straight line, whereas equation of circle 
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(20) transforms into the usual Coulomb-Mohr 
condition, which is well known as the criterion of 
fluidity. In this case, the Mohr’s circle (20) is tangent 
to the straight line (22); the scalar functions 0,ξ  ,ξ  

0η  and ,η  given by formulas (17), can be easily 
found from the differential equations (23). For 

example, if 0η  is a constant, then the relation 0η β=  

follows from the system of equations, consisting of 
the second formula in (23) and of the first and the 
third formulas in (17). Its physical interpretation is 
the following: 0η  corresponds to the bonding of the 
granular mineral fertilizer and is a strictly positive 
quantity due to the condition (13) and formulas (17). 
Thus, if the system of equations, consisting of (10), 
(11), (15), (16) and the Coulomb condition, is used 
for representation of the stress tensor in the non-
dissipative case, then the general determining 
equation has the form: 

( )
( ) ( ) (

( )( ) ( )( ))
( )

strain-rate tensor

1 s-r.t. 2 s-r.t.

2
0

2

0 :

2

2

2 ;

.

tr I

grad U grad U U

grad U U div grad U I

r

ϑ

σ ν ϑ ν ϑ

ξ η η

ξ ξ

λ β ω


≠ ⇒ 

= ⋅ ⋅ + ⋅ ⋅ − 


⋅ ⋅ ⊗ + − ⋅ + 

⋅ + ⋅ ⋅ ⋅ ⋅

= ⋅ − 

��

�

 (24) 

 
The medium, described by equations (24), is 

called Coulomb granular material.  
D. The basic mathematical model of the 

dynamics of unconnected Coulomb granular 
materials (with granular mineral fertilizers as an 
example) with constant density in the regions of 
dissipative medium.  

In this subsection, the dynamics of unconnected 
Coulomb granular mineral fertilizers is considered 

with constant density ( ), , ;W x y z t const≡  in the 

regions, where the medium is not in the state of non-
dissipativeness. First of all, we note that the non-
connectedness of granular materials (in our case 
Coulomb granular mineral fertilizers) in 

mathematical notions means that 0 0β η= =  holds. 

Obviously, quantities, characterising the investigated 
here materials in such regions, are the functions ξ  
and .η  Consequently, the general determining 
equation (24), which has been obtained in the 
previous subsection, takes the following form: 

 

( )
( ) ( ) (

( )( ) ( )( ))

1 s-r.t. 2 s-r.t.

2

2

2

2

2 ;

.

tr I

grad U grad U U

grad U U div grad U I

r

σ ν ϑ ν ϑ

ξ η

ξ ξ

λ ω

= ⋅ ⋅ + ⋅ ⋅ −


⋅ ⋅ ⊗ − ⋅ − 


⋅ − ⋅ ⋅ ⋅ ⋅ 

= − ⋅ 

��

�  (25) 

 

The obtained equation (25) is a dynamic relation 
for the tensor of stresses. The substitution of the 
equation (25) into the momentum balance equation 
(5) gives us the following differential equation: 

( )2
v.d. grad U

t

ϑ
ρ η

∂
⋅ = − ⋅ +
∂

�

 

( )( )( )2
2 U grad grad Uξ⋅ ⋅ ⋅ +  

( ) ( )( )1 2 grad divν ν ϑ+ ⋅ +
�

 

( )( )2

2 v.d. .grad U Fν ρ⋅ + ⋅
�

              (26) 

 
The system of equations, consisting of the 

equations (4), (5) and (26), describes the cases, where 
the medium is not in the state of equilibrium, i.e. 
when it is the dissipative medium. If one analysis the 
dimensions of differential equations (26) (the 
equation (26) is a tensorial differential equation and, 
consequently, it does not consist of a single equation), 
then it becomes clear that, in addition to the usual 
dimensionless quantities, appearing in the theory of 
viscous fluids, it is necessary to consider two extra 
dimensionless parameters: 

− the dimensionless parameter ,L  which is 
called the relative length and is defined as the 
characteristic geometric size ,ℓ  normalized to 
the characteristic length of the material, i.e.  
 

;
def

L
η
ξ

≡ ⋅ℓ                         (27) 

 
− the dimensionless parameter  
−  

,
def W g

M
η
⋅ ⋅

≡
ℓ

                    (28) 

 
where g  is gravitational acceleration; the meaning of 
parameter M  – this is the ratio of gravitational forces 
and forces, responsible for the spatial distribution of 
granular mineral fertilizers in bulk.  

For mathematical completeness and correctness of 
the elaborated mathematical model (4), (5), (26), it 
must be completed with the allowed boundary 
conditions, which ensure the existence (the question 
of solvability) and uniqueness of the solution. 
Conditions on the basic variable fields U  and ,W  

fluxes σ
�

 and e.v.,f
�

 or on their combination can be 

used as boundary conditions. For example, the 
boundary conditions for fluxes 

 

e.v.

;n h

f n

σ

τ

⋅ = 


⋅ = 

�� �

� �                           (29) 
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can be used, where h
�

 is the usual effort vector and τ  
is the tension, which is related to the vector of 
stresses. It should be noted here that, since the tension 
τ  refers to the system of self-balancing forces, the 
resulting forces are vanishing on the surface and, 
consequently, there is no need to set 0τ =  in the case 
where free surface is present. However, one should be 
also noted that the balancing tension is related to the 
surface energy per unit area, and it influences the 
effect of surface tension. In the case if both the 
balancing tension τ  and the effort vector h

�
 are zero 

on the boundary, such a boundary is called tension-
free boundary.  
 

III.   NUMERICAL EXPERIMENT 
Carrying out the numerical experiment, a two-

phase medium of homogeneous solid particles sized 
0.5-10 mm was chosen as the granular medium, in 
which the granular medium is a dispersed phase, and 
the dispersion phase is liquid. To simplify the 
mathematical model (4), (5), (26), (29), the 
corresponding technological process was considered 
only on the plane design mesh (see Fig. 1) under the 
condition that the technological process proceeds at 
invariable geometry of the inclined vibration 
classifier, at isothermal conditions and at absence of 
chemical reactions.. 

 
Fig. 1. Plane design mesh for coarse particle of granular dispersion 
medium. 

 
After taking into account aforesaid suggestions 

we have got the following simplified mathematical 

model ( )1,2; 3 :i j i= = −  

1 1 1
1 2 1 1

1 2

11 12
1

0 1 1

1
,

i i i
i i

i i
ji

i

g
t x x

P P
F

c x x

ϑ ϑ ϑ
ϑ ϑ

ρ

∂ ∂ ∂
+ ⋅ + ⋅ = Ω − +

∂ ∂ ∂

 ∂ ∂
⋅ + + ⋅ ∂ ∂ 

ɺɺ

 

2 2 2
1 2 2 2

1 2

12 22
2

0 1 2

1
,

i i i
i i

i i
ji

i

g
t x x

P P
F

c x x

ϑ ϑ ϑ
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Below there are some graphical results of the 
numerical implementation of the simplified 
mathematical model on the application package 
MathCAD 14.0 (version 14.0.0.163). 

 
Fig.2. Three different laws of vibration acceleration. 

 

  
Fig. 3. Dependence of the flight time and the expansion coefficient 
of granular materials on duration of positive vibration pulse. 
 

 
Fig. 4. Dependence of the condensation time of granular structures 
on the vibration frequency under fixed vibration level (VL=�/��� : 
solid line shows harmonic excitation; dashed line shows 
polyharmonic excitation. 

 

 

 
Fig. 5. Dependence of the separation time of granular materials on 
the vibration level VL=�/�� :   (a) harmonic excitation; (b) 
polyharmonic excitation. 
 

IV.  CONCLUSION 
In this paper, the mechanism of processing 

granular disperse materials in gravitational flows, 
using horizontal or inclined vibrating sieve 
classifying screens, is investigated. The apparatus of 
continuum mechanics is chosen as the apparatus of 
mathematical modelling of the investigated problem 
and, consequently, we assume that the properties of 
the particle flow, considered as continuum, can be 
presented in the form of continuous functions in such 
a way that each infinitesimal part of the disperse 
granular medium has characteristic properties of each 
separate particle.  

In the actual paper, based on: (a) volume 
conservation law of granular components, (b) 
momentum conservation law, (c) equations, 
describing Coulombic interactions of granular 
disperse materials in gravitational flows, (d) 
equations for the stress tensor in the granular mineral 
fertilizers (both in the case of non-dissipativeness of 
granular medium and in the case of its 
dissipativeness), a mathematical model is built up, 
which consists of 7 equations (4), (5), (26) and 
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boundary conditions (29). In this work, we have 
analysed also the possibility to consider other 
boundary conditions, which enable to ensure the 
existence and uniqueness of the solution for the 
system of equations (4), (5), (26). The necessity of 
arising different from (29) boundary conditions is 
related to the practical point of view: for instance, for 
a specific type of horizontal (or inclined) vibrating 
sieve classifying screens, the ensuring of boundary 
conditions (3) can appear to be unprofitable 
(economically and/or technically) or even impossible.  

It has to be outlined that the elaborated 
mathematical model describes only the mechanism of 
motion of granular disperse materials in gravitational 
fields, but not drying, sorting etc., which are other 
important problems arising in practice.  
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