Environment. Technology. Resources, Rezekne, Latvia
Proceedings of the Finternational Scientific and Practical Conferenslume Ill, 69-76

On a Mathematical M odel Describing Optimal
Processing M echanism of Dispersed Granular
Materialsin Gravitational Flow with Horizontal
or Inclined Vibrating Sieve Classifying Screens

Armands Grickus!22, Sharif E. Guseynov? 230
Ynstitute of Fundamental Science and Innovativenfietogies, Liepaja University, Liepaja LV-3401, Viat
2Faculty of Science and Engineering, Liepaja Uniitgrgt Kr.Valdemar Street, Liepaja LV-3401, Latvia,
3"Entelgine” Research & Advisory Co., Ltd., Klei§treet 2-53, Riga LV-1067, Latvia;
aarmands.grickus@liepu.l¥sh.e.guseinov@inbox.lv

Abstract. The investigation of motion and gravitational processing of disperse granular materials is very important for
solution of a wide spectrum of technological processes, including the chemical technology of treatment (with or without
the decoration-compression procedure) of granular mineral fertilizers and their drying and sorting/separation by means
of vibrating sieve classifying screens, in particular. In this work, we have used the apparatus of the theory of continuous
media for the mathematical modelling of dynamics of disperse granular materials, and by this we assume that a property
of these materialsisthe distribution of a solid granular component inside of them. The elaborated mathematical model is
based on the volume conservation law for granular components, on the momentum conservation law, as well as on the
equations for stress tensor in the granular mineral fertilizers and equations for description of the Coulomb granular
mineral fertilizers.

Keywords: dispersed granular material, gravitational flow, vibrating sieve classifying screen, continuum mechanics,
mathematical model.

I. INTRODUCTION attempted to derive rules, describing the behawdur
The investigation of the motion and mechanics ofthe particle flux as a whole. Significant contrilouts
the gravitational processing of disperse granularto the theory of dynamics of disperse granular medi
materials is important for solution of a wide spent have been provided in foreign works (see [8]-[18])
of technological processes, including the chemicalReynolds O., Faraday M., Deresiewicz H., Rowe
technology of treatment (with or without the P.W.and Winterkorn H.F., where problems related to
decoration-compression procedure) of granularartificially excited vibrations, as well as quesisoof
mineral fertilizers and their drying and different kind concerning the natural sand flowyéna
sorting/separation by means of vibrating sievebeen investigated. Despite of these and othertsesul
classifying screens, in particular. Apart from and their interpretations, which have been obtained
technological processes of different kind, the by experts in different fields in framework of tfiest
investigation of dynamics of disperse granular raedi method of modelling, up to now the mechanism of
is extremely important for solution of such probfem motion of disperse granular media have not provided
as mineral extraction, engineering, geology — thea satisfactory explanation of many unusual
motion and erosion of soils, in particular, andoesb  phenomena, arising in motion of such media. When
(for instance, see [1]-[7] and the references ihgre the second method of modelling is used, it is aggslim
Currently, there exist two methods for mathematicalthat the properties of particle flux, considered as
modelling of the dynamics of disperse granularcontinuum, can be represented by continuous
materials: the first method — this is the consilera  functions, in such way that any infinitesimal paft
of disperse granular media on the level of separatalisperse granular medium has properties of each
unconnected, but interacting particles ([5], [#he separate particle. For example, those mathematical
second method — this is the consideration of thismodels, which use the apparatus of plasticity theor
media from the point of view of continuum are based on criteria of Coulomb-Mohr fluidity; seo
mechanics ([3], [4], [6]). When the first method of mathematical models, which use the apparatus of the
modelling is used, the flux of finite-size partigles  theory of fluidized boiling beds, are based on
considered, these particles being representecyamk ri thermodynamic principles for particle distributiom
or elastic geometric figures, e.g., spheres, and it bulk, and so on. In this work, the apparatus of
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continuum mechanics we will use for elaboration of gp,, (x,y, 7z 1)

corresponding mathematical models, describing the —— 5 =P (XY, 21 di‘(LQ( XYz }) ®3)
dynamics of disperse granular materials.
L. MATHEMATICAL MODELLING where 9=39(x Y,z 1) is the spatial vector of the

A. The volume conservation law for granular velocity with three Cartesian components 9,
components and the momentum conservation law 9 div( 3 . :
As it was stated in the introduction, we will “z and V(8(x y,2) is the divergence of the

investigate the dynamics of disperse granular mediaector field .

in gravitational flows from the point of view of Remark 1. If the granular components (in our case

continuum mechanlqs and, hence, we can state th%e granular mineral fertilizers) of the body,, are
the property of a disperse granular material is the

presence of solid granular component, distributedmcompressible, then mathematically it means that

inside of it. Therefore, to take into account the M:O holds. Consequently, in this case
distribution of solid phase in bulk of a continuous ot

granular body (we denote this body B,,), we the equation
have to introduce the bulk distribution function
U=U(xY,z1, which is a kinematic variable and

is continuously defined in the whole region occdpie
by the body. This function can be interpreted a&s th
porosity, i.e. as the volume fraction of empty g§sac

(relative free volume), although in reality it iket

inverse of this volume fraction. The introducedener instead of (3). .
function U (x y, Z t) can be defined as It has to be noted that the conservation law (#) ca

be derived directly from (1). In addition, it is
U(xyzt=1-TI( x y; z }, where TI(X, Y, Z 1) important to notice that, although the volume of
egranular components is constant, the total volume
needs not to be constant, i.e. the total volumebzan
varied: the positive/negative dilatancy (it is the

U(xy,z9

o U(xy.zY dyI(xyz})),®

which describes the volume conservation law for the
granular components in the boy,,,,» must be used

denotes the porosity. Obviously, the volume of th
granular components in the bodi.,, can be

defined by the formula increase or decrease of the volume at shear
» deformation) can serve as a natural example in
e disperse systems of high concentrations, for exampl
Vg’a““'e(t) - J U(X’ Y. 2 t) dv (D) in natural fertilizers. Consequently, in equatidi, @s

Dsohd

well as in equation (3)div(§) needs not to be zero.

Introducing the notion of mass density Further on, since the total mass of granular minera

W(X’ Vi Z 9 of granu|ar components, we can fertilizers is calculated from (2), we can writeeth
momentum conservation law in the form of

determine the total massMg,anule of granular

. 09(x v,z |
components in the bodlp, ; by the formula Poa(X V.2 t)[ ( aty zY F]: d|\(a( X ¥ 3) (5)

def

M granuie(t) = I UXY.Z9-W(xyzkd (2 or componentwise in the form of

D,
solid algl X’ ’ z
pv.d.(x' Y:Z t)'((Ty)_ Ii:J:O-ij K

def )
where p , (x,y,zt)= U(% y z}- W x y z)iis the

volume density of the investigated disperse granula i -
medium. Further on, since we consider thea@nd tangential stressesoy, =0, Oy =01,
investigated dlsp(_erse medium as _a continuous _medlagXZ =013 Oy =0y, Oy =0y, Oy =003, G, =0,
the mass of the interpore space in the bBy, is

negligibly small. Consequently, the total mass
M ue(t) of the granular components can be

considered as the total mass of the granular rahteri @nd the covariant derivative is expressediy .
and, therefore, the following continuity equatiar f

the considered granular material can obtained from

the equation (2):

where g is the Cauchy stress tensor with nine direct

0, =03, 0,,=0g F is the vector of mass forces

with Cartesian componenfs =F, F, =F,, F,=F;;
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B. Equation for the stress tensor in granular
mineral fertilizers
In this subsection, we will consider stresses & th

case of non-dissipative granular medium, as well a

in the case, where this media is dissipative vilgen
the energy of ordered macroscopic motions or field
transforms irreversibly into the energy of disomter

(i.e. chaotic) motions or fields. Let us assume tha

specific Helmholtz free energyy),;, of granular
mineral fertilizers depends on the bulk distribatio
functionU (X, Y,z t) and on its time derivative, as
well as on the density of granular components ef th
body D and  temperature T, ie.

solid
Aite. = Aﬁ.f.e.(u7%’pvd.’ Tj- We can now

introduce from thermodynamic considerations the

following dynamic quantities:

—pressurer,p_ of the investigated disperse granular gne

media :

def

U _WZ . a'AH.f.e. .

Pm
oW

(6)

p. =

—spatial pressurePS,p,, which is related to the
distribution of granular components in the bulk:

def
Ps,p, = U2 “W- a'Q-I.f.e. :

U ()

_effort vector f. which is the vector of the

ev.?

S

U=U(xY,z1 is denoted bygrad(U). It follows
from the equation (10) and expressions (6)-(8) that

S}he stress is completely determined by Helmholtz

energy function in the non-dissipative case: thist f
is analogous to the corresponding relation for the
equilibrium stress in compressible fluids.

Now, in order to determine the dissipative part of
the stress in granular mineral fertilizers, we witle
the corresponding equation from the theory of
viscous liquid:

6 - 5-* = Vltr (lgs-r,t,) r + 2V2‘9$-r.t.’ (11)

where 4., is the strain-rate tensor, determined as the

symmetrical part of the spatial gradient of velesit
the notiontr(&s_m_) means the trace of the tensor

& ., of the second rank (one time covariant rank and
time  contravariant  rank); guantities
v,=1(UW) and v,=v,(UW) are viscosity
coefficients.
C. Equation for the description of Coulomb
granular mineral fertilizers
The obtained in the previous subsection equation
(10) is the general equation for the non-dissigativ
part of the stress, and just because of this genera
form it cannot be used for solution of the actual
problem: precise expressions are necessary for

pressures,, and R, as well as for the balancing

vector of stressed, . In this section, the required
expressions will be obtained. For this purpose, we

balancing stress (as it is related to the system 0¥Vi” assume that specific Helmholtz energy per unit
self-balancing forces, applied either at the VolumeU -W- A, is an isotropic function (i.e. it is

pressure centre or shift centre; see e.g. [1]):

def
fe,v, =U.-W- aA-I.f.e. .

2U 8)

Then, from thermodynamic considerations, we can grad(U)|U

write

def

P =U-div(T,,)=P,~ P, (@

Equation (9) is a fundamental equation and, beingshear

a tensor function, the symmetry group of which
agrees with complete orthogonal group; tensor
function — it is a mapping, relating several tessof
different ranks to one tensor of certain rank), akhi
can be expanded in Taylor series in vicinity of
., =0 where U, is the limiting

.

distribution in bulk, which corresponds to the liimg
relative fraction of empty spaces in granular maher
fertilizers (the limiting relative fraction of empt
spaces in granular mineral fertilizers correspotuds
such a state, where volume does not change under
action; some kinds of granular mineral

determined by expressions (6)-(8), the dynamicalfertilizers, having larger or smaller relative fiiaa of

quantitiesh,,, R, fe_v_ characterize just the non-

dissipative part of the stress
def

& =U-div(f,)-P, T-f.®grad(V), (10

where the symbo® means the tensor product; the
spatial gradient of the scalar function
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empty spaces as compared to its critical value,
correspondingly decrease or increase their volume
under the shear action, see Remark 1). In additven,

assume that the deviation H)grad(U)” from zero

and the deviation of quantityJ from U, is
negligibly small. Consequently, within accuracytap
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terms of the third and higher orders of smallness w  The determined by formula (18) direct stresss
can expand the functidd -W- A, as follows: related to the tangential stre6s,g, acting on the

2 i same area, by the following rule:
UW- Ay = 2 ‘,Q( U- Ul.d.) +
i=0

c;- grad(U)- grad( U,), (12) G* + Gang ( n) =Pt
4£ Py (grad(V)- 7'+

wherec =G (U,U,), i=13 (grad( ))2 (grad( U7 )2. (19)

In view of the natural requirements of
positiveness of the Helmholtz energy:W- A ;. per

. Now, using expressions (18) for exclusion of the
unit volume and of its minimum at the condition ) o 4K
term -T) in equation (19) and keepin
grad(U)|U7U =0, we can write down the following (graQ(U) n). g _ (19) -p g
T squares in the final expression, we obtain the

restrictions for the coefficients, i -0,3: following relation:

=2

=0, ¢>0,ic{0,2,3 (13) Gong +(G-0) =17, (20)

Now, substituting the expansion (12) with With the introduced here notations

coefficients (13) into expressions (6)-(8), we dfota et et
e e

Esﬁ'(S.JJréld(U))z, w=-P, -1 (21)

0 6
Pm.pv:(W'a—\f/— j.( grad( U))" + W 50 —&, (19
Further on, taking into account equation (14), the

P, =—1,+7-U%—¢&(grad( U)) . (15)  second relation in (21) for the pressifg, takes the
f,=2¢- grad(V), (16) following form:
where the following notations are used: r=21-(f-wo), (22)
ldefW 5§ ag
S=l 0 pog W20 (o3
&=C+6(U-U,Y, A& W Pmem Wy @9
y=Co+C,- Uz, 17)

Finally, comparing the expressions (20) and (22),
§=%, n=_cG,. we will find the required relation between the

tangential stress?tang_ and the direct stress, acting

Equation (10) for the stress in non-dissipative On the considered area in the given point of granul
situation together with equations (14) and (16)mineral fertilizers in the state of non-dissipatiess.
require that non-dissipative direct and tangential Remark 2. If G and G, are considered as
stresses, which act on certain area at some @6 Cartesian coordinates, then the equation (20)
a special mutual relation. Note that in the . .
hydrostatics, where the tangential stress must péepresents a circle with centre at the pcﬁﬁh,ta)) and
completely absent, a similar result takes place. radiusy, Besides, the requirement that the radius of

At non-dissipativeness of the considered granularthis circle must be a function of the shift of dsntre
media, the tangential stress has a characteristifrom the origin of the coordinate system followsrir
nonzero value, which is related to the value of theequation (22), which has been obtained from (20),
direct stress. In order to establish this relationtaking into account (14). If equation (22) is choses
mathematically, we will consider an arbitrarily the necessary and sufficient condition of the non-
chosen and fixed spatial point and an arbitrargdix dissipativeness of the media, then this result lwan
plane with the normafi,,. Taking into account the considered as a generalization of the Coulomb
condition on stresses at the limiting equilibrium i
granular mineral fertilizers, in which the angles o
internal friction and bonding are functions of dégns
W and bulk distribution functiotd. Finally, note
e that in the case if quantities and £, determined by
o= n-(o- -n) =—Rp-2¢ ( grad rj (18) formulas (23), are constant, equation (22) beccanes

equation of straight line, whereas equation ofleirc

equations (10) and (16), the direct stressacting on

the fixed plane, is calculated by the following
formula:
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(20) transforms into the usual Coulomb-Mohr The obtained equation (25) is a dynamic relation
condition, which is well known as the criterion of for the tensor of stresses. The substitution of the
fluidity. In this case, the Mohr’s circle (20) iangent  equation (25) into the momentum balance equation
to the straight line (22); the scalar functiofis &,  (5) gives us the following differential equation:

09

17, and 7. given by formulas (17), can be easily pvdy—=—77-grad(U2)+

found from the differential equations (23). For ot

example, if7, is a constant, then the relatigg = S 2-£.U .grad<( grad( U))2)+

follows from the system of equations, consisting of ~

the second formula in (23) and of the first and the (v1+v2)-grad(div(3))+

third formulas in (17). Its physical interpretatids ) .

the following: 77, corresponds to the bonding of the vz‘(grad(U)) + P F (26)

granular mineral fertilizer and is a strictly posit

quantity due to the condition (13) and formulas)(17 The system of equations, consisting of the
Thus, if the system of equations, consisting of),(10 equations (4), (5) and (26), describes the casesiev
(11), (15), (16) and the Coulomb condition, is usedthe medium is not in the state of equilibrium, i.e.
for representation of the stress tensor in the nonwhen it is the dissipative medium. If one analyhis
dissipative case, then the general determiningdimensions of differential equations (26) (the

equation has the form: equation (26) is a tensorial differential equatéord,
consequently, it does not consist of a single égnpt
Krainrate tensor” 0 = then it becomes clear that, in addition to the Lisua
6-:Vl'tr(‘gs-r.t.)'r+2'v2"95-r.t._ d_|menS|onI¢ss quantities, appearing in the thedry o
viscous fluids, it is necessary to consider tworaxt

2.£-grad(U)® grad( U)+(770 -n- W+ | (24) dimensionless parameters:
— the dimensionless parametdr, which is

2 . -
¢-(grad(U))"+2-U- div(¢- grad( U))) I called the relative length and is defined as the
r=1-(f-o). characteristic geometric siz¢ normalized to
the characteristic length of the material, i.e.
The medium, described by equations (24), is det
called Coulomb granular material. L= g.\/i; 27)
D. The basic mathematical model of the &
dynamics of unconnected Coulomb granular
materials (with granular mineral fertilizers as an — the dimensionless parameter
example) with constant density in the regions of
dissipative medium. de\W . g/
In this subsection, the dynamics of unconnected M= : (28)
Coulomb granular mineral fertilizers is considered n

with constant densityW(x ¥ z §= cons in the _ L _ .
where § is gravitational acceleration; the meaning of

regions, where the medium is not in the state o no parameterM — this is the ratio of gravitational forces

dissipativeness. First of all, we note th_at the -non o4 forces responsible for the spatial distributid
connectedness of granular materials (in our Cas%ranular mineral fertilizers in bulk

Coulomb  granular  mineral  fertilizers) in For mathematical completeness and correctness of
mathematical notions means thét=7, =0 holds.  the elaborated mathematical model (4), (5), (26), i
Obviously, quantities, characterising the invesga must be completed with the allowed boundary
here materials in such regions, are the functiéns conditions, which ensure the existence (the questio
and 7. Consequently, the general determining©f Solvability) and uniqueness of the solution.
equation (24), which has been obtained in theConditions on the basic variable fielts and W,

previous subsection, takes the following form: fluxes & and ‘?e.v_: or on their combination can be
- - used as boundary conditions. For example, the
G=vtr(8,) 1 +2-v, 8~ boundary conditions for fluxes
2-£-grad(U)® grad(U)-(n- U - -
) ¢ (25) c-n=h; (29)
(grad(U)) —2-U-div(&- grad U ) l; P
£-(grad(V)) ¢ grad U)) f fier

r=-1-.
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can be used, whetg is the usual effort vector andl 09,

08, o 08

. ) o . +9, —2=0,-g,+
is the tension, which is related to the vector of &t tox 12 X, 2 ¥z
stresses. It should be noted here that, sincestison

7 refers to the system of self-balancing forces, the 1 . oPy, +5Fi’zz+ =

resulting forces are vanishing on the surface and,c1 po L OX 0% iz
consequently, there is no need to set0 in the case

where free surface is present. However, one shmild 8_q+ 8((:, "21) + 8(q “9'!2) =0

also noted that the balancing tension is relatethéo Ot 0% 0%,
surface energy per unit area, and it influences the 59. 09
effect of surface tension. In the case if both the Pm=a0+a’0.[_ll+_12J+
balancing tensiorr and the effort vectop are zero % 0%
on the boundary, such a boundary is called tension- 2
free boundary. (ag+ai)~al9”-&912—ag~ 6311+ 094 +
X 0% 0% 0%
. NUMERICAL EXPERIMENT 2 2
Carrying out the numerical experiment, a two- ,, 9% a - e +a 0%y ) 0%,
phase medium of homogeneous solid particles sized * 0%, ! 0% ! 00X 0%
0.5-10 mm was chosen as the granular medium, in 2
which the granular medium is a dispersed phase, and , 08, 5311+ 09,
the dispe_rsion phase is liquid. To simplify the % ox | ox, 0% '
mathematical model (4), (5), (26), (29), the
corresponding technological process was considere _ %+6912 losa 6911+ 985,
only on the plane design mesh (see Fig. 1) under th 112~ o 0% 1 %, 0%
condition that the technological process procedds a )
invariable geometry of the inclined vibration | 09, 09,09, 04, (03, 08,
classifier, at isothermal conditions and at absesfce - o, + o%, ' ox, + ox, | ox + ox ) |
chemical reactions..
F 9 P
: P Fg_zzzao‘Fa’O‘[aalgll‘*‘%]-f-
- X %
2
Py (ag+ 0‘{) 661911 . 661912 —ag-(aa‘911+ aalglzJ n
Py v [ . X 0%, % 0X%
1 2 2
== 1 1 1
Prg L) %, 0%, % ) 0x
2
a!/‘ al912 . 61911+ 61912
e o (o ox )
¥ P 619
Pu=-P+2-u-—2, PB,=u %4‘% )
Fig. 1. Plane design mesh for coarse particle afigiar dispersion 8X1 5’)(1 5)(2

medium.

After taking into account aforesaid suggestions
we have got the following simplified mathematical

model (i=1,2;j =3-i ):

09 04 04 F211 = F212
i1""9i1' il""giz' Ilzél_gﬁ'
% 0% F
1 . Ry, + oPR,, " Fjil ,
G-po L OX 0%
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09,,

Poo=-P+2-u- o, '

4.7-d%-p, -, fif ¢, >2-c,

6-Cc
-VP.
G+ q

f, if ¢, <2-q,

= Fip=7-d-9,,(0.042d- 9,5 p 5

0.45 u-3|(d- 9, pr,) + 3
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f,=0.042d-9- py, + 0.454-3(d- 9,y p,)° + 3u ,

2
3 :(12'01 +3j. p(1-2576)"(9:-8) |
1-¢ d
ologplz.d.w.

Below there are some graphical results of the
numerical implementation of the simplified
mathematical model on the application package
MathCAD 14.0 (version 14.0.0.163).

Q Fs
- /\
‘0 - \/ET ?
\ f b
oy
7 v ° B ‘
]
4
=T
ol
[ T [2T =
T
Fig.2. Three different laws of vibration accelevati

A Ar

FIT/T (flying time / time)

»

+ »
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Pulse/T

0
Fig. 3. Dependence of the flight time and the espancoefficient
of granular materials on duration of positive vila pulse.

T,s 4

3251
260 T Vibration level=1
195+ Vibration level=2
) Vibration level=3
130
\
o | —eeere— ZE
0 50 100 150 200 250  &m

Fig. 4. Dependence of the condensation time ofudearstructures
on the vibration frequency under fixed vibrationde(VL=02/g):

solid line shows harmonic excitation; dashed lineoves
polyharmonic excitation.

75

=50 Hz

201

(a): Harmonic excitation

T,sA

301

20+

10

(b): Polyharmonic excitation

Fig. 5. Dependence of the separation time of gearnmlaterials on
the vibration level VL=0/g: (a) harmonic excitation; (b)
polyharmonic excitation.

IV. CONCLUSION

In this paper, the mechanism of processing
granular disperse materials in gravitational flows,
using horizontal or inclined vibrating sieve
classifying screens, is investigated. The apparatus
continuum mechanics is chosen as the apparatus of
mathematical modelling of the investigated problem
and, consequently, we assume that the properties of
the particle flow, considered as continuum, can be
presented in the form of continuous functions iohsu
a way that each infinitesimal part of the disperse
granular medium has characteristic properties ohea
separate particle.

In the actual paper, based on:
conservation law of granular components,
momentum  conservation law, (c)
describing Coulombic interactions of granular
disperse materials in gravitational flows, (d)
equations for the stress tensor in the granulaeraln
fertilizers (both in the case of non-dissipativene$
granular medium and in the case of its
dissipativeness), a mathematical model is built up,
which consists of 7 equations (4), (5), (26) and

(a) volume

(b)

equations,
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boundary conditions (29). In this work, we have
analysed also the possibility to consider other

boundary conditions, which enable to ensure the

[4]

existence and uniqueness of the solution for the

system of equations (4), (5), (26). The necessity o
arising different from (29) boundary conditions is
related to the practical point of view: for instaenor
a specific type of horizontal (or inclined) vibragi

(5]
(6]

sieve classifying screens, the ensuring of boundary
conditions (3) can appear to be unprofitablem

(economically and/or technically) or even impossibl
It has to be outlined that the elaborated

mathematical model describes only the mechanism of

motion of granular disperse materials in gravitaio
fields, but not drying, sorting etc., which are ath
important problems arising in practice.
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