Environment. Technology. Resources, Rezekne, Latvia
Proceedings of the Yinternational Scientific and Practical Conferenaélume Ill, 129-135

On Mathematical Modelling of the 2-D
Filtration Problem in Porous axial
symmetrical cylinder

Imars Kangro!, HarijsKalis?, Erika Teirumniekal, Edmunds Teirumniekst
1 - Rezekne Academy of Technologies, Faculty dhEegng, AtbfvoSanas aleja 115, LV — 4601g4ekne,
Latvia, Tel. +371 4625150, Fax +371 4625901;
e-mail: Erika.Teirumnieka@ru.lv, ilmars.kangro@my.Edmunds.Teirumnieks@ru.lv
2 - Institute of Mathematics, Latvian Academy oé®saes and University of Latvia, Z@ 8, Riga LV — 1002,
Latvia, Tel. +371 67033721, Fax +371 67820113; einkalis@Iu.lv

Abstract. In this paper we study diffusion and convection filtration problem of one substance through the pores of a
porous material which may absorb and immobilize some of the diffusing substances. As an example we consider round
cylinder with filtration processin the axial direction. The cylinder isfilled with sorbent i.e. absorbent material that passed
through dirty water or liquid solutions. We can derive the system of two partial differential equations (PDES). One equation
is expressing the rate of change of concentration of water in the pores of the sorbent and the other - the rate of change of
concentration in the sorbent or kinetically equation for absorption. The approximation of corresponding initial boundary
value problem of the system of PDEsis based on the conservative averaging method (CAM). Thisprocedure allowsreducing
the 2-D axis-symmetrical mass transfer problem described by a system of PDEs to initial value problem for a system of
ordinary differential equations (ODES) of the first order.

Keywords: absorption, analytical and numerical solution. diffusion problem, filtration, sorbents, special splines.

.  INTRODUCTION The study of hydrodynamic flow and heat transfer

The task of sufficient accuracy numerical through a porous media becomes much more
simulation of quickly solution 3-D problems for interesting due to its vast applications [8], [BH1410].
mathematical physics in multilayered media is Many mathematical models are developed for the
important in known areas of the applied sciendesat  analysis of such processes, for example, matheahatic
transfer in multlayered media, for example, models of moisture movement in wood, when the
calculation of the concentration of metals in gagérs  wood is considered as porous media [1], [10].
[16], the heat and moisture transfer processefidn t

porous multilayered media layer, for example, II.  MATHERIALS AND METHODS
mathematical modelling of moistening and drying 1. A mathematical model
process in the wood-block [1]. Filtration is the separation process of removing

For this purpose we consider two methods: speciakolid particles, microorganisms or droplets from a
finite difference schemes and conservative avegagin liquid or a gas by depositing them on a filter nogdli
method (CAM) by using integral parabolic and [15]. This paper deals with filtration processes of
exponential splines. solid-liquid mixtures (suspensions, slurries, sksjg

Therefore, the CAM is considered in the present[12]. For adsorption kinetics we use linear Her8y [
article; too, the finite-difference method is usied and nonlinear Langmuir [3], [13], [14] sorption
solving the 1-D initial value problem for system of isotherms.

ODEs due to obtain the solution of the 3-D initialue In [3] a contaminant transport model with
problem. Langmuir sorption under non-equilibrium conditions

A. Buikis was developed different assumptions for which is described by two coupled equations —
CAM along the vertical coordinate in the Cartesian advective-dispersion equation and non-equilibrium
coordinates using parabolic splines [3], [11]. We a sorption equations is considered. In this paper we
expanding the usage of splines method with integraktudy the filtration process with diffusion and
parabolic and exponential splines [16], [2] in ditat, convection in the domain
not only in Cartesian coordinates, but also in Q={(r,z,#):0<r<R,0<z<L,0<¢<2r}.
cylindrical coordinates too [1], [10], if it reqeis the

model under consideration. This domain€2 consists of porous material, where

through the pores of filter moves incompressible
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practical meaning and also theoretical interest in
mathematical physics problems in which several kmal
parameters appear. These parameters are connecteda,
with some geometrical dimensions in the problem and 5t—1
also with the relations between the coefficientshef ~ ~
equations. We will consider the nonstationary axis-Wheref(ay) =a /1~ Pay), = pUo,
symmetrical problem of the linear filtration theory u, (r, L, ty) =ug, () =1-tanh@qty) , ar = alyp .

We can derive two equations; one is the adsorbed g, P =0 we have a linear Henry isotherm.
phase of concentratiora(r,z,t) for the pollutants

which are absorbed per unit volume and per ungtim 5 Thge conservative averaged method in z-direction
The other equation is the aqueous phase of potiitan  \va consider conservative averaging method

concentration u(r,zt) in sorbent pores. Then (cawm) of the special integral splines with hypericol
convection and diffusion PDEs in the cylindrical trigonometrically functions for solving the initial

liquid - pollutants in z -direction. This problem has
(r or or 6z° 0z oty

2
12(Drr%j+.gza_ul]+voa_ul:myﬁa_ul+ 5o,
1

=w - f(a),rel0R,ze[O L], t>0

coordinates are in the following form [17], [5]: boundary-value problem inz -direction [6]. This
10 au o2y aCu U ea p_rocedure allows reducmg_ thg 2-p probl_emrl,rz-
——| Dyr— [+ D;— |+Vg——=m—+—, directions to a 1D problem indirection. Using CAM
ror or Py 0z ot ot . - .
in z -direction with parametea, we have
ou ~ 05Lsinh(@,(z- 05L))
—=plu-u),re[OR],ze[0L],t>0, Zt )= t t z
= Au=0)r<OR,ze[0L] w(n2ty) = wlrtyb+ ma(rt) == H ==
where a=u/y is the expression for linear isotherm cosh@, (z— 05L)) - A
i1 €z(rty) £ : .
of Henry, D,, D, are the transversal un tangential 8sinh? (a,L /4)

diffusion coefficients or the dispersion coeffidign L
V,, = constis the pore water velocity iz -direction, ~ Whereu, (r,t;) = L_lj‘o y(rzt)dz,
M is the fraction Cllf the total volume of the matkria _sinh(@,L/2)
occupied by poresy is concentration of pollutants, 2 _W
which is in local equilibrium condition®a/dot =0
with the amount of liquid sorbet, is the time, £ is

the kinetically coefficient or the sorption ratenstant,
1/y is the Henry coefficient for the sorben

The parameter, can be choosing for minimizing
the maximal error. If the parameter, >0 tends to
t zero then the limit is the integral parabolic selifh.
Buikis [4]), because o, — 1:

characteristic.

We assume that all coefficients in the PDEs are (z—O.5L)2 1
assumed constant and independent of concentratiord1(r,z,ty)= Uy, +m,(z-05L) +e, Tz 12
For nonlinear sorption we hawe=G/(A(1+ pd)),
which is referred to as Langmuir isotherm, whegres .

9 o The unknown functions

positive parameter (forp=0 we have Henry m, =m, (r.), e, = &(r.t;) can be determined from
isotherm). For the initial condition fot=0 we give  gnditions:
u(r,z0)=0, a(r,z0)=0. We use following 1)for z=0 md,—ek=0, m,=ep,

boundary conditions: py=k/d, u(rOty) =u, —m,L/2+eb,

6u(0,z,t)_au(0,z,t)_0 b 00 2)f0|’2= L, uOZ:uV+mZL/2+eZb,
o oo  _OuURzZD=aARZD=0 e, = (Uo, Uy )/ g0, whered = 05La, cothQ5a,L) .
u(r, L, 1) = Uy(t) = Uy(L— tanheat)), M (;’0' D_o @ k=023, coth(025a,L),
z .

a0y, b= (coshé,L /2)— A, )l8sint?(a,L /4)),

oz g0=b+05L p;.

Now the 1-D initial-value problem (3) is in the
following form

wherea = cons , Uy = const. The concentrationl
on the inlet is depending ¢n

For predetermined parametels= u/Ug,
a; =ay/Ug,Up =U/Ug,t; =tyB8 we have
following system (3):
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mﬁauv da, 1(8(Drraﬂn+
oty oy or or
a0?(Uug, Uy ),
o
%wv—f(av>,re[o,R],L],t>0, (@)
ou,(Ot)  da,(0t) _
P . =0u,(Rty) =

a,(Rt) =0 u,(0)=a,(0=0,

a2 t)dz,

k -
a0? =(2th+Vop1j/ g0, f(a,)=a,/(1- pa,)-

here we assume that the averaging of the nonlinear
term f(a,) does not change its form.

Wherea, (r,t;) =

3. The conservative averaged method in r-
direction

Using averaged method in r-direction with
parametersa, we have

uv(r’tl) = uvv(tl)+ My (t) fn (1) +er (ty) fe(r)
where

025R?(a, * sinh(a, (r - 05R))

(1) == G054 R)(g, 1) !
(r) = cosh@, (r - 05R)) - A
fe 85|nh2(arR/4) ’

2 (R 2 (R
—zjo Irfm(r)olr:—zj0 rfo(r)dr=0

sinh(g R/2) _
A _—qR/Z d; = 05Ra cothQ55R) .

We can use following values of parameters

a, =a0/1/D, .

If the parameteia, >0 tends to zero then the limit
is the integral parabolic spline:

uy (r,t) = Uy +my (%(r - 0.5R)—1j +
(r-05R)% 1

€ — |

From boundary conditions (4) follows
unknown coefficients-functions:

1) forr=0 mdr—gk, =0 orm, =g p;
2)forr =R, O=u,, +m/b,+eb, or
05d1R(ar)

di-1 '

pr =k /d;,

the

€ =-Uy/0g;, whered, =

k; = 025, coth025a R),
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be = (coshé R/2) - A ) fBsint?(a R/4),
025R?(a, )?
—(ar) -1, Or =be+ Prby.
d; -1
Now the 1-D initial- value problem (4) is in the
form of foIIowing ODEs system'

b, =

m ﬁ Doy +IB at = —bOZUW(tl) +
oM 1

20%(Upy (t1) — Uyy (1)), -

0

;vlv = U (t) - F(aw). 11 >0

uy () =a,0) =0,
where f(a,) = a, () (1 Pay(ty)),

2 (R 2 4Dk,

ay(ty) _EJ‘O ra, (r,t;)dr, b0® = —Rgr .

We rewrite the1-D initial-value problem for system
ODEs (5) in following normal form:

L]w(tl) = blluvv(tl) + b12 f (avv) + flu()z (tl)a

Ay (t) =byuyy (ty) + by, F(a), t >0, (6)
w@=02a,(0)=0,
_ p+boP+a0® 1
where b= —myﬁ ,bio= - =1
a0®
by, =-1, f; = “wp

If p=0 then we have the following vector form
of linear ODEs system:

W(ty) = AW(ty) + F,W(0) =0, (7)
where W(t;),F(t;) are the 2-order vector-column
with elements(uyy (t1),an (1)), ( f1uo, (t1).0).

A is the 2-order matrixA = [bll blzJ .
bp1 by
The averaged linear and nonlinearp ¢ 0)

solution we can obtain with Matlab solver " odel15s"

4. Backward orientation for CAM

For estimation the parametess,a, we use also
backward orientation for CAM — first of all, we do
CAM in r-direction and then in the in z-direction.

Then in r-direction we have

uy(rzty) = uy(z.t)+ my (Z.ty) (1) +

& (z.ty)fe(r).
From boundary conditions we hage=—u, /g, ,
m =g p, and the problem (3) is in following

form (8):



Imars Kangro, et al./ Environment. Technology. Resesy¢2017), Volume Ill, 129-135

d da, 02 o the modified Bessel functions, f,=Fy/a0?,
myBY | g =Dz—uz" +Voﬂ—b02uv, " Hnet 1=
at, oty oz oz a; =a0/+/D .
5 . L .
ay _ u, - f(a,), ze[0, L], ze [0, L], t > O, Using averaged method in r-direction with
at, parameter a, we havei(r)=u, +mfy(r)+efg(r),
ou,Ot) oa,Ot) B where
oz 0 oz 0 uy (L) =g, _ (UO - uv)pr o Up —Uy
a,(L,t;)=Qu,(z0)=a,(z0) =0 Or Or
where W = 4Dugk, — Fyg, R
2 (R 2 _ 4Dik " 4Dk, +a0%g,R
a,(zt) =— | ra,(r,zty)dr ,b0" = —— r 9
J(2t) = [rau(r.zt) - .
f(a,) = a, [(1- Fa,). D =1Fy=-10 a0=2a =2Uuy=1 R=5  we
Using CAM in z-direction we have have following maximal error:
- _ iy 14
a,(2.ty) =ty (t)+ my (ty) 0-5|—5|.nh(az(2 05L)) , 1) 1.278 for parabolic splineaf =107%),
sinh(0.5a,L) 2) 0.0021 for hyperbolic spline.
cosh —-05L))-
ez(tl)( ez(ljz ) AZJ 1. RESULTSAND DISCUSSION
8sinh”(a,L/4) 6. Some numerical results
where

-1k 3 Experimental data have been obtained studying the
Upy(ty) =L Io UV(Z tl)dz’ a; =b0y1/D; . filtration process through hemp shives using the
From boundary conditions we have adsorption column "Adsorption CE 583" [12] at the
e, = (UOZ —va)/QO, m, = &,p; and the problem Chemistry, biology and biotgchnqlogy research eentr

laboratory of Faculty of Engineering of RTA.

(8) Is in the form of (5), where The results of calculations are obtained by

ayw(t) = |_—1J"-av(Z tl)dz, MATLAB. We use the discrete grid value
0
5 — L.
k t,=Nn—, n=0,N; ,z =i—,i=0,N,,
a.02 :(2D2I+V0plj/ gO n Nt t 4 NZ z
Therefore we have in every CAM orentation r. :ji,
obtained two algebraic equations for determine the N,

spline parameters in following form
a, = f1(a;) = a0,/1/ D,

= = j— g
a, = f,(a,) = bom. R=019m], L=1m], and parameters,, _ZE[I },
The optimal parameters we can obtained by 4 m2
solution these equations with method of simple =13, y=12, m=04,D,=10 oo

iteration. ForV = 0 it is possible usage of exponential

type spline for equations (8) in method CAM [7]. D, = 5.104|: m } Vo - 01[%} =02,

j=0N,, N,=10N; =50N, = 30t; = 550,

5. CAM for model equations _
p= 0,0151510,t; €[0t;]. Forp=3, y=1,

For approbation CAM in r-direction and estimated a, =1000, t; =50, p=0 (dimensional final time
the parametera, we consider model stationary 1-D (

boundary-value problem in following form: is _f:5o/3[min]) we obtain with direct CAM

{Dr‘l(ru’(r))'—aozu(r) =Fy,r€[0R], Pr

(9) orientationa, = 34155(the results of calculations are
u'(0) =0, uR) = up,

represented in Figs.1-4 with backward CAM
orientation a, = 1153, with direct CAM orientation

_ _ _ a, =340312, with backward CAM orientation
analytical ~ solution is  u(r)=Calo(@)-f1, 5 -115176 (Figs. 5, 6) and with direct CAM

Ug + f1
q-:

where Uy, Fg,a0> 0, D > 0 are given constants. The

where 15(0)=1,(0)=0, 14,1, are orientation a, =340312 (we have quickly
lo(aR) convergent iteration process).
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The maximal values of u(r,zts)=0.0198,
u,y (t) = 0.0706, a, (t) = 0.0698 and
u, (ts )= 0013 are equal for both CAM orientation.

The maximal calculated dimensional value of
liquid concentration in the final timeQ50[g/1]) is

good (acceptable for practical problems) comparing

with  experimentally  obtained  concentration

(054[g/1]).
The matrix A has following eigenvaluesA
A1 =-361, 1, =—-0042 It was obtained, that in

outlet of the domairD.5L < z< L the concentration
u is small and:

1) The averaging concentration af for r =0 is
decrising in the time with maximal value By =5
(Fig. 1),

2) The concentratioml for t; =50 is maximal by
r =0 and is incrising in z-direction (Fig. 2, Fig. 3),

3) The averaging concentrations of,, and a,,
are equal for both CAM orientation and different
depending on the time&,,, > Uy, only fort; > 10,

4) The averaging concentration for CAM in r-
direction of u,(z,t;) is maximal by z=0 and is
decreasing in z-direction (Fig. 6).

The maximal values af,(r,t;), u,(Ot),

u(r,zts ), uy(t), ay(t) anduy,(ts) for different

p are represented in Table 1.
Table 1: The maximal values ai,(r,ts),

Conc. on t,Maxuv(r=0)=0.1025
0.12 ; . ! .

011 Py

0.081 4

uv(0,t)
o
o
)
*

0.04

0.02¢ S

0 1‘0 26 30 4b 50
t
Fig. 1. Averaging concentratiod,, depending ortl for r =0

_ Conc. u(r,z,t)depends on r

x 10 3 ( t¥) p
— 7=
= =7=0.8

z=0.6 |

= z=04
—2z=0.2

::,.

=1

_5 L 1 L
0 0.05 0.1 0.15 0.2

r

Fig. 2. ConcentrationU(r, Z,t+ ) profile depending orz for
t; =50

Conc. on r,Max uv(end)=0.0180

u, (Ot), u(r,zts), uy(t),a,() and u,(ts) 0.02
depending onp Trre e
Do up(ritp) [ ug(0,8) | u(r, z,t5) | wpe(t) | apolt) | ww(ts) 0.015¢ **
0 | 0180 | 1025 | 0200 | 0711 | .0702 | .013 *
0.1 | .0179 | 1020 | .0199 | .0714 | .0700 | .013 — **
1.0 | 0172 | 1067 | .0191 | .0740 | .0683 | .012 3 ooty .
50 | 0144 | 1249 | 0160 | .0865 | .0603 | .010 .
10 | 0118 | 1474 | 0131 | .1022 | .0505 | .008
. .y . 027 . 0.005¢ *
1.0°| 0214 | 0863 | .0237 | .0598 | .0561 | .015
1.0, | 0012 | 2400 | .0013 | .1604 | .1405 | .0008 *
0 : : £
0 0.05 0.1 0.15 0.2

We can see, that with increasing the filtration
process is faster (see,(r,t;), Uy(t), ayl(t).
Uy (ts)), but the maximum of concentration is t; =50

increasing (see, (0,t),u,, (t)). In the present table by
p= 10" there are maximal values fgp =3y =2
(4 =-229,1, =-0033).
We can see that the filtration process is slow.
For p=10« and f=1y=1 (4 =-384,
Ay =—0119) the filtration process is faster.
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Averaging conc. U , a  depends on time confirmed the correctness of the best parameter

0.08 — calculation using a convergent iteration process.
007 - i The problem of the system of 3D PDEs with
006l w constant coefficients is approximated on the ihitia
A value problem of a system of ODEs of the first orde
_ 005~ The 1-D differential and discrete problems are aglv
S 0041 analytically.
= The maximal calculated dimensional value of
0.03/ liquid concentration in the final time was compared
0.02} with experimentally obtained concentration. It was
0.01l observed in the results of good agreement that is
acceptable practice.
% 10 20 30 40 50 Such a mathematical model allows us to obtain
t analytical solution with a simple engineering
Fig. 4. Averaging concentratiob,, (t;) and @, (t1) algorithm for mass transfer equations for modelling
depending oty the filtration process.
The mathematical model can be used under
o omarco 0158 i consideration filtration process modelling - to
o x 10 determine the impurity concentration in the solutid
18 filtration depending on the time.
16 More generally, it allows you to calculate the
1 saturation of the filtering material, depending the
0 time.
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