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Abstract. In this paper non-deterministic motion of urban traffic is studied under certain assumptions. Based on those
assumptions discrete and continuous mathematical models are developed: continuous model is written as the Cauchy
initial-value problem for the integro-differential equation, whence among other things it is obtained the Fokker-Planck
equation. Besides, the sufficient condition ensuring the mathematical legitimacy of the developed continuous model is
formulated.

Keywords: traffic flow, mathematical model, Cauchy initial-value problem.

I. INTRODUCTION drivers in the general traffic flow. Therefore, time

The main classical question of the traffic flows model there should be introduced additional
theory, which is of essential interest also to theassumptions, which are allowing not to consider an
contemporary applied sphere of urban traffic individual contribution of each possible factor ttha
management, is to study the existing relationshipmay affect the dynamics of changes in road
between the basic physical characteristics of theconditions, but do not result in distortion of the
traffic flow — density, flux and velocity ([1]). Th  resulting system behavior as a whole. For thisaeas
question of exact and unambiguous determination othe concept of an equilibrium condition of trangpor
the main physical characteristics of a traffic flaw  system ([10]) is introduced while constructing
particular, of traffic flow density, is consider¢slbe = mathematical model of the non-deterministic motion
the most significant question. For this purposeaas of traffic flow. Traffic tends to return to the
rule, various mathematical models (for instance, se equilibrium state in the event of possible local
[1]-[9] and respective references given in these),deviations. The equilibrium state of the transport
describing the behavior of traffic flow under variso  system requires that the average flow rate (traffic
conditions are used. The unequivocal finding of thevelocity) at each time point corresponds to its
traffic flow density in a desired point of givenearat  equilibrium value at a given density of vehiclehieT
any point in time will allow to exercise more specified requirement stated as assumption
effective and resource-saving management of trafficconsiderably narrows a scope of application of
flows ([10]). In addition, the unambiguous finding mathematical models, being limited to consideration
the traffic flow density in the studied areas o€ th of traffic flow only at road sections without crosgs,
urban transport system will allow changing the etc. The fundamental work [1] describes in detits
controlled parameters of the transport system @ahsu main properties of traffic flow (uncertainty,
way, so that the vehicles distribution both in sisale  finiteness, dependence of the distance on timesand
of individual road sections, in the scale of certai forth), which ignoring, does not allow to considee
residential districts as well as in the whole dtale  constructed mathematical models as rigorous arld rea
would become admissible, i.e. traffic flows dengity enough that they could be taken as full-fledgetffitra
the "bottlenecks" road sections during the rushréiou models.
were staying within admissible limits, the exce$s o This paper considers a non-deterministic motion
which leads to various negative consequences, foof urban traffic flow on the assumption that the
example, such as formation of traffic jams. On¢hef  vehicle can move both forward and backward. At
greatest difficulties encountered in mathematicalevery fixed period of time there are no limitations
modeling of traffic flow, is that the behavior of imposed on vehicles motion within traffic flow, i.e
vehicles on the one hand, must be subject to thehere are no restrictions imposed that a chandbeof
restrictions and requirements of the traffic current location of any vehicle can be carriedanly
regulations, and on the other hand, is determined bat the adjacent position: such a restriction, asvsh
aspiration to achieve the individual goals of thein [10], means the traffic flow with preferencedaih
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leads to linear mathematical models (both discretell. MODELLING OF THE NON-DETERMINISTIC
and continuous). In this paper, we give up the abov MOTION OF TRAFFICFLOW "WITHOUT
mentioned restriction, which means the following: a PREFERENCE"

every fixed period of time vehicles in traffic flosan  The first of the four assumptions outlined in the
replace any of the current locations to any othién w introduction of this work, along with another
a given probability, where the motion to free assumption (see [10]) that if any vehicle in time
neighboring location represents just one of themoment n-At has a coordinatel -4X, in the
possible particular cases. Such non—deterministicsubsequem moment of tim€n+1)~At the same
traffic flow will be called traffic "without
preference". From a mathematical point of view, the
assumption of traffic flow "without preference" is (i+1)-Ax, wherein the probability of finding vehicle
equivalent to the following four assumptions:

vehicle may have a coordinatéi —1)-AX or

) in these two points are equal, i.e.
- at each moment of time _ _ 1
t=0, At, 2-4t, 3 4t ,.. any of the vehicles P{x=(i-1)-4x}= P{ X=(|+1)-Ax}=§, that
may have one of the arbitrary coordinates |oads to the discrete linear model
0, AX,+ 2-AX,+ 34X, ..; U(m—l, n)+U(m+1,r‘)
— if some vehicle at the time moment U(m n+l)= > . @

n-At(neZ,) has a coordinate Ax (i e Z),
then at the subsequent time moment
(n+1)-At the same vehicle can be at any (but

where functionU (m, n) (neZ,; meZ) means the

number of vehicles at time momentAt at the point
having coordinatem- AX For a given value of the

initial distribution of vehicledJ (m,0) in the traffic

coordinates with probability flow_, the discre_te linear model (_1) mak_es_it p_olssib
et to find approximately the required distribution of
Py = PN ) vehicles in traffic at all subsequent moments wieti
Furthermore, from (1) follows the property that
specifies the nature of vehicles distribution chemg
with time: when the number of vehicles at any point
at the time momenh-At (neZ,) coordinate  becomes smaller than the arithmetic mean values at
neighboring points, then this number increases, and
vice versa (in [10] this property has been calleel t
j-AX (j ez) at the next time moment traffic flow restoration property). Thus, the fitthe
four assumptions mentioned in the introduction of
this work generates a linearity property: by addime
ie., Pri. is subject to Markov process: which initial distributions of vehicles in traffic flowtheir
distributions at any subsequent time are added as
well. Looking ahead, let us note that the latter
assumption (i.e., the fourth assumption) will net b
not depend neither on the state of transportactive during the construction of the mathematical
system in the previous time moments, nor onmodel, however, this assumption would be essential
behavior of other vehicles in the same traffic during the study of already constructed mathemiatica
flow; model, namely, during the proof that constructed
— the studied traffic flow is assumed uniform (or mathematical model carries catholicity property in
nearly uniform), and physical properties of the some sense (see the next section). The second and
traffic flow — density, intensity and velocity third assumptions, as it will be shown below,
are supposed to be not dependent on theadically change the basis of the traffic flow
direction of vehicles motion in the transport probabilistic process ([10]), which supports the
system. construction of a mathematical model (1). Indeed,
As it will be shown in the following sections, the first of all, let us note that in view of the fatiat in
above listed four assumptions allow to construct athe traffic flow vehicle has to appear somewhete, i
discrete model, and then, using the principles ofcould be written
continuum mechanics, proceed to the continuous Zp_..le(nEZ ieZ).
mathematical model for the unknown traffic density. < ! (2)

However, by analogy with the identity (15) it could

not be stated thaz Prii,j =1 because the value
ieZ

not only at adjacent with-Ax coordinate
(i—1)- Ax or neighboring(i +1)- Ax) of these

— for each vehicle in the traffic flow the
probability Pri. that the vehicle, which had

i-Ax (iez), would be at the coordinate

(n+1)-At(neZ,), has a Markov character,

means that for each vehicle in a traffic flow
these probabilitiesp,,  (neZ,;i,jez) do

Z Pni.j may have a value greater than one, if the
ieZ
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one-dimensional roafH-,+1] having a lengt2:1 is
preferable for the driver; and this sum can be less
than one in case when the poiptAX (j€Z) is

again to a differential equation with respect te th
required densityo(X,t) of the traffic flow, and in

th|s equation there will be "bound "only those
vehicles of the flow, which form a kind of contimau

something not preferable for the driver. Within the where vehicles do not interact directly, but are

time interval[n-At,n-At+At] (ne Z, ) the number
of vehicles moving from the poirty - AX( m e Z)

"infinitely close" to each other. For example, if a
discrete functionp,,; ; is independent o€ Z, and

of the studied one-dimensional road segment having'as the formp, ; = p(i-j)(i.j€Z), then the

2:1 length to any other point m,-AX
(M, eZ; m=m) in this section, is equal to
U (ml, n)~ Rim.m - Within the same time interval in
the opposite direction, i.e. from poinf, -AX
(M, €Z) topoint M-AX (M eZ; m= m), itis

movingU (M, ) B, o
Hence, it is possible to write down "vehicle baklhc
using the following recurrence relation:

U(m,n+)~U(m, n- Y m, 0; Prym

number of vehicles.

;:Z U (m,.n). R;@,m}=n§Z{U(n3, 3 Bt "
Then,
U(m,n+)= S {U(M. ) oyt ¥ meZ.

m,eZ

average "jump" of each vehicle in the considered
traffic flow for a single time step tends to zero;

(B) If the average "jump" of each vehicle at a &ng
time step does not have to tend to zero at
AX— 0,At— 0, then the limit transition

AX— 0,At — 0 in the discrete model (3) will lead
to the integral (resulting) ratio with respect teet
required densityo(X,t) of the traffic flow, i.e., in

this case atAX— 0,At— 0, sums will turn to
integrals, but not into partial derivatives.

We will not dwell on the scenario (A), and
examine the scenario (B). However, after the stfdy
scenario (B), we will return to the scenario (Ao
different ways, namely, in the results obtainedtfar
scenario (B) we will assume at once that the séenar
(A) takes place.

So, let the scenario (B) takes place. Let us rewrit
the discrete model (3) as follows:

The meaning of this equation is obvious: any vehicl Y (m,n+1)-U(m, N~

within the studied traffic flow at the time moment

(n+1)-At(neZ,) must be coming from

somewhere to the point having coordlnates

m-Ax(meZ). From (3) it is obvious that the

nbzez{u(”b’n)‘ p‘i”b:nl}_u( m, r)nbzez R e

=m
Having divided this equation byAt, and then
introducing designations

discrete model (1) is a special case of the discret x = |im m-Ax y= ||m m-A x t=||m nA t

model (3). Indeed, for theVm,meZ in (3)
assuming that

1 .

=, if -m|=1
o =12 |, —m|

0,if |m —my|=1,

the recurrent formula (1) could be received.
Similarly, to how in work [10] when receiving
continuous model

op(xt) Iim( AX ]Z.azp(x,t)

ot Ax—0 \/2 At OX?

At—0
limit transitions AX— 0, At — O in discrete model

(1) have been carried out, in this section in (&ré
will be also carried out Ilimit transitions

AX— 0, At — 0. In this connection it is essential to
distinguish between two possible scenarios:

(4)

(A) If the average "jump" of each vehicle in the

studied traffic flow at a single time step alsodgmo
zero atAX— 0,At— 0, then the limit transitions

111

Ax—0
m —+w rTbAer n—>+oo

p ( X, t) rn/velght

we obtain the following integro-differential equati
for the required density (x,t) of the traffic flow:

ap(xt) ]'Kty,) p(y1) dy-

U(mn),

+l

p(x,t)-j K(t;x y)dy, xe(— 1+, te(0,T], (5)

e
where the kernel K(t;z,2)>0, te[0,T],
ze[-1,+1](i=12) of integro-differential

equation (5) is interpreted as follows: the probigbi
that the vehicle in the traffic flow, which at thiene

momentt €[0,T] was at the poing, €[-1,+1] of a
road section, during the next time momémtAt will
appear in the interval [z, 2+ dz]c[- |+ ]
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(z#2), wil be equal to the value

K(t;z,2)dzdt In other words, the kernel
K(t;z,2) is defined as a vehicles “jump"
probability density in a traffic flow from the pdin
z, e[-1,+1] to the pointz, e[, +1] (z# 2) in

a time momentte[0,T]. In other words, the

function K (t; z, 2,) is the relative velocity of such a

"jump" of vehicles in the traffic flow at time mome
forms out 1D mathematical model of the non-
deterministic motion "without preference” of a fraf

flow, where the required functionp(xt) is a
density of a traffic flow.

. INVESTIGATION OF THE CONSTRUCTED
MODEL (5), (6)

Let us recall that the mathematical model (5), (6)

has been obtained only under the assumption that

scenario (B) takes place. Therefore, it is inténgsto
find out the "automatic" presence (or absencehef t
scenario (A) in the mathematical model. In facis th
aspiration means that we would like to find out the
catholicity of a mathematical model (5), (6) among
the similar traffic flow model classes aimed atifirg

of the traffic flow density characteristic. It idwous

Then for vy e [-,+1] we can write the identity

T{K(t;y,x)—d(x— y): }dXEO. ©)
I?;Iy denoting

R(6y0 % K(E v )-8 (% y-] Kt ) &

let us take into account identit;(7) in equatisi (

op(x,t) ¢
%=IK(t:y,X)-p(y,t)dy (8)
-

It is obvious that the equations (5) and (8) are
equivalent and, therefore, the model (8), (6) s a
1D mathematical model of the traffic flow non-
deterministic motion "without preference" in respec
to required density and it is constructed in the
assumption that the scenario (B) takes place. Now i
(8) we will assume that the scenario (A) takes glac
Then at any fixedX and t values the kernel

K(t;y, X) of the equation (8) as function of one
argumenty is different from zero only in the small
vicinity of a pointx= X, e[|, +1],t =t, €[0,T]

. _[K(y)#0, ye B(e; %),
K(t°’y’x°)_{0, ye B(;%),

+|

[ K(tx&) &

©)

where B(¢; Xo)dg{x: Yes0 | e )8| < g} denotes

the small vicinity of a poin,. Hence, the scenario
(A) suggests that in (8) the main contribution he t

112

{. It is important to note that in (5) (hereinafterda
throughout this paper), the valfemay be equal to
infinity, and consequently, in this case, inste&the

interval [0,T] and the half interval(0,T] it is

necessary to také),oo] and(0,x), respectively.

Thus, integro-differential equation (5), togethethw
the initial condition

p(x,t)L:0 =po(X), xe[-1+1] (6)

that if the model (5), (6) will appear to be more
general, than, for example, the continuous modgl (4
describing the traffic motion "with equiprobable
preference", then there comes out a question of
finding sufficient conditions under which transitio
from the model (5), (6) to other models, in paiacu

to model (4) becomes possible. In this sectionehes
and other questions are studied.

In a well-known formula

(Y)=I5(X— y)- f(X) dx whered(+) is a delta

Dirac's function, let us select as functidr(+) the

f(.)E]'K(t;.,g)dg.

f

following function

integral is carried out iB(&; X) by the variabley-
Let us expand the density function(y,t) in a
Taylor series at the poirk :

ap' (xt) (y- x)i_

0

p(y.t)=2

(10)

X il
Substituting (10) into the right-hand side of the
integro-differential equation (8) gives us the
following integro-differential equation:
Gp(x,t)_i 1 9" (xY)
ot = (2-0)! ox
+ .
[K@EY=9)-(y-%"dy @

|
record K(t; |y—x1)= K(ty X is
legitimate by virtue of the fourth assumption froine
introduction section (assumption of independence of
density of the uniform traffic flow on the directiof
vehicles motion). From the obtained equation (1),

is now easy to derive the 1D mathematical model (4)
Indeed, from (11) follows:

0 220D Ticly—)-(3- 47 e

where the

ot 2
o a1 oo
1 6p2 (X, t) +l
2T e

-IK(t;|z|)-fdz+ (é( v }(3)

x>
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, 6p2(x,t) . Hence, for the legitimacy of the designation (12)
a (t)-—2+ 0] (y— X) ) (in other words, for the legitimacy of equation)(#)
oX
is sufficient that forvxe[-I,+1] and Vte(0,T]

o def the relation would be fulfilled

a (t)sz(t;z)-fdbO. 12) |5 (x1)]

_ _ 0 _ p—z'-IK(t;z)zzdz»
It is obvious that having the assumption (9), wa ca 0X 0

neglect the terms of higher order of smallness

0((y— X)B), and then we receive the Fokker—Planck

where

1 |op"(x1)| |

|
. | K(t;2) Z dz
equation (for instance, see [13]) Since in the resulting relation (13) there appears
2 i
Mzaz(t)-w, It is obvious that the op' (x.1)
ot 6X2 Xi

discrete model (4) is a special case of the Fokker-. _ . . o
little use from the practical point of view: in diqit

functions (i=2,4), this relation is of

2
. AX h it i - - :
iana? = lim _ >0. problems it is not possible to verify the fulfilnteof
Planck equationf a0l 2- At 27 condition (13) because of the unknown function

It is important to highlight that the method by whi 2 (X t). However, in many cases it is easy to
model (4) was obtained from equation (11) allows measure the averaged range of density variaticm of
other continuous 1D models to be obtained from thehomogeneous traffic  flow and, wusing this
same equation (11) (for instance, see [2], [3]],[11 characteristic of the studied transport systemmfro
[12] and appropriate references given in these). Inrelation (13) it is easy to establish from a preatti
this sense the equation (11) is the general equatiopoint of view a sufficient condition for a transit
(naturally, within similar/comparable classes of from a complex model (11) to a relatively simple
models) for determination of required density of a model (4). Indeed, taking the valuAx as the
traffic flow. It should be noted that the desigoati  4yeraged interval of the vehicle "jump" in the fiaf
(12) is a purely formal designation, since we hao® 4, ang takingAp as the averaged density changes
clarified the question of the convergence of the ) .
range of the homogeneous traffic flow on given

integral on the right-hand side of this notatioet s |, " int | Ax that the funcii
study this question. In order to do this, let ustfnote jJumpinterva We can assume that the functions

that equation (5) (or (8)) implies straight only |60'(x,t)| ,. Ap
g ®) (2|) P 9 Y LI) (i=2,4) have orders - Therefore,
OX (Ax)
instead of relation (13), we can write down a new
on that we do not have the right to assert therelation

convergence of the integrz{IK(t;Z) dz and based
0

+l +l +
2 .

convergence of the integralj K(t;z)- Zdz 12-(Ax) J. K(t;2) Z dz>>.[ Kt1Zzd(a)

0 0 0

Despite the fact that the relations (13) and (14)

seem to be similar, however, there are essential
distinctions between them: first, the relation (13)
fixed parametet =t, e(O,T]. In other words, it is unlike the relation (14), does not contain unknown

necessary to find a condition under which influencefunc.t'ons’ and, cqnsequently, from the practicahpo
of view, the condition (14) is much more preferable

of a kernelK (t =1,; ) would be concentrated in the gjnce it could be easily verified: secondly, thiatien

small vicinity of zero. To find this required cofidn, (14) pinds the kerneK (t;y,X) in the non-local way
we note that on the right-hand side of equation (11 T
to the averaged range of variation in the densitg o

for each valué = 2,3,... ignoring the term homogeneous traffic flow, and from the relation)(13

Therefore, there arises a question of the decnedse
of a kernelK(t;z) with a growth ofZ for each

2i +1 . . . .
l_ op (;(’t)'fK(tiIY-ﬂ)(y— X)z. dy th|s_ could not be concluded, since functions
(2:i) ox J ap' (x.t) 24 _ _
is possible only in case if —Gxi (l_ , ), being present in that are
i apz(iil)(xlt) h . 2(i-3 unknown, and hence, are not being subject to
21 ox2y J;K(t,|y—x|)(y— gl dy> comparative analysis.
0 Finally, it should be noted that the found
1 .|8p (% 1)

. 2i sufficient condition (14) also makes it possible to
K(t,|y—x1)(y— X) dy discover the following interesting property of

+l

2i-1] o |
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equation (11): even if the kern&l (t;|y— XI) of the C_auchy_ initial-v_alue proble_m for th_e integro-
differential equation, from which, in particulahetre

integro-differential equation (11) remains unchahge fojiows the Fokker-Planck equation. Further, insthi
(se_e the probabilistic interp_retatio_n of the kernel paper, a sufficient condition is found, which first
which has been made immediately after thegngyres the mathematical legitimacy of the develope
derivation of the equation 5)) for two traffic flow  ontinuous model, and, secondly, proves the
problems, in one of which the valu (that is, the  catholicity of the developed mathematical model
average interval of the vehicle "jump" in the tr@ff among the similar classes of traffic flow modeledis
flow) is comparatively less than the correspondingfor determining the density of the traffic flow: i
value AX in another problem, then the integro- proved that fulfilment of the found condition is
differential equation (11) can lead to completely sufficient to obtain (under the same assumptions)
different models. As it has been already mentiadned other models for finding the density of the traffic

the introduction, the main physical characteristifs
the traffic flow are its density(x,t), traffic flux

d(xt) and velocity:3(X,t). The obvious equality

a(xt)=9(x 1) p( % ) shows that, firstly, the flux
of the traffic flow is in direct proportion to both

flow based on the developed continuous model.
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