
 
Environment. Technology. Resources, Rezekne, Latvia 

Proceedings of the 11th International Scientific and Practical Conference. Volume III, 304-309 
 

ISSN 1691-5402 
© Rezekne Academy of Technologies, Rezekne 2017 

http://dx.doi.org/10.17770/etr2017vol3.2655 

 
 

Nonlinear Numerical Modelling of Basalt 
Rebar Reinforced Concrete Structures 

 
Jānis Šliseris, Līga Gaile, Leonīds Pakrastiņš, Kārlis Rocēns 

Riga Technical University, Faculty of Civil Engineering, Institute of Structural Engineering and Reconstruction, 
Address: Ķīpsalas street 6, Rīga, LV-1048, Latvia. 

 
Abstract. The ever increasing tendency of more complex architecture and increasing use of basalt fibers in concrete, 

mainly due to corrosion resistance, requires a suitable, accurate and computationally efficient numerical method for 
m.odelling of mechanical behavior. A novel numerical modelling methodology for basalt fiber reinforced concrete 
structures is proposed. In this paper, the main focus is on modelling concrete beams with basalt longitudinal rebars and 
steel shear rebars. The proposed method is based on two step simulation method. On the first step a database of flexural 
stiffness depending on stress-strain state is created using non-linear simulations with continuum finite elements. The 
database of flexural stiffness is used in second step by performing nonlinear beam finite element simulation of frame 
structures. The numerical method showed good agreement with experimental results. The use of pre-computed database 
of flexural stiffness significantly accelerate non-linear simulations and whole building can analyzed by taking into 
account material non-linearity. 
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I. INTRODUCTION 

Basalt fiber reinforced concrete have increasing 
popularity due to corrosion resistance, high tensile 
strength to weight ratio and good non-magnetization 
properties. Basalt fiber use in structures where 
corrosion effects are significant, can be economically 
and environmentally beneficial. The precise and 
optimal structural design of basalt fiber reinforced 
concrete requires an efficient and robust numerical 
modeling technique. 

Numerical modeling of basalt fiber reinforced 
concrete is complex process. The numerical model 
must take into account the material non-linearity. 
Experimental investigations shows that, even for the 
deflections smaller that serviceability limit state, 
there are observed highly non-linear material 
behavior [1].  

The flexural testing of single span basalt fiber 
reinforced concrete beam showed a complex cracking 
pattern and load-displacement character [1,2,3]. 
Meanwhile, slip between basalt rebar and concrete for 
certain circumstances can be observed experimentally 
[1]. In case of multi-span basalt rebar reinforced 
concrete plate there are observed bending moment 
redistribution and highly non-linear material 
behavior [4]. 

Those material nonlinearities can be taken into 
account by appropriate material constitutive law. A 
thermodynamically consistent non-local damage 
model for concrete are proposed by [5]. This material 
model is used in this work. In case of cyclic loading, 
stiffness recovery and frictional sliding between fiber 

and concrete, there are proposed a special constitutive 
model [6]. A virtual crack monitoring starting from 
micro-cracks to macroscopic cracks can be achieved 
by using a combined XFEM- damage mechanic 
approach [7]. An effective way for calculation of 
material parameters that are necessary in continuum 
damage model by using fracture mechanic approach 
are presented in paper [8]. A convergence problems 
may arise when non-linear concrete material model is 
used, therefore non-local theories are recommended. 
A consistent scheme for calculation of tangential 
stiffness for non-local damage models are prosed in 
work [9].  

Real-size structures can be mathematically 
modelled by using extended multi-scale finite 
element (EMFEM) model, or other sub-structuring 
methods [10,11,12,13]. In those publications, mainly 
continuum based finite elements are used. Currently, 
there are lack of information on modeling using beam 
finite elements on coarse scale and continuum 
elements on fine scale. For concrete structures beam 
finite elements have been widely used to get the 
whole building structural response. In this work there 
are proposed a modelling framework of concrete 
structures with basalt rebars. This technique is based 
on two scale simulations. On the fine scale 
simulations, a database with precomputed stiffness 
characteristics of concrete elements are obtained, 
depending on deformation state. Furthermore, this 
database is used for numerical modeling of whole 
structure on coarse scale by using non-linear beam 
finite elements. 
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II. NUMERICAL MODELING 
Appropriate numerical modelling technique is 

dependent on the structural behaviour. For slender 
beam or frame structures here are proposed a special 
semi-analytical method that take into account bending 
moment and axial force when estimating flexural 
stiffness. When the beam span to cross section height 
ratio is less than 10 then it is recommended to use 
EMFEM approach to generate the database with 
flexural stiffness for necessary cross section. In case 
of large building frame, both methods can be 
combined to get maximal performance. 

Material constitutive model for concrete is similar 
as described in publication [5], that include separate 
damage variable for tension cracking�� , and for 
compression damage ��. As indicated in experimental 
testing of basalt rebars, they behave nearly linear 
elastic up to failure [3]. Therefore linear elastic model 
is used for basalt rebars. 

For the tension zones the stiffness was reduced 
with multiplier �1 − ��� ∗ �1 − ��� , but in 
compression zones �1 − ���  [5]. The evolution of 
damage variables was defined by exponential laws. 
For more details see [5]. 

For beams with complicated geometry, where 
high stress gradients can appear, it is necessary to use 
embedded window method [11]. In this case the beam 
finite element is joined with linear elastic extension 
(with length 
∗ ) in both ends. This method is 
recommended for the cases when hypothesis of flat 
cross sections is not valid.  

Concrete is modelled with continuum based finite 
elements. In this paper a plane stress 4 node finite 
elements are used. Rebars are modelled by using 2 
node link type finite elements. 

The obtained database are used in non-linear 
beam finite element. Only material non-linearity is 
used for small strain theory. 

Extended multi-scale approach 
Secant stiffness matrix of beam FE is obtained by 

performing fine scale simulation with plane stress 
non-linear finite elements. For beam element with N 
degrees of freedom (DOF), the nodal displacement 
vector �� = {��, ��, … , ��� . From structural 
mechanics and finite element definition it is clear that 
i-th column in stiffness matrix is defined by nodal 
forces of beam finite element from appropriate unit i-
th DOF []. Therefore N+1 load cases are necessary 
for calculation of stiffness matrix of beam finite 
element. i-th load case is defined by following 
displacements applied to nodes of finite element �� =
{��, ��, ����, 0, ���� … , ��� . The reaction forces 
from nodal displacements on coarse scale nodes are 
denoted in following way �� = ����� =
{��,�, ��,�, … , ��,�} . Coefficients of secant stiffness 
matrix are obtained using following expression: 

 

 ��,� = ��,��� ,�

‖"�‖
, (1) 

where index i- indicate load case number and j- 
component of reaction force vector. 

For relatively slender structures, instead of 
calculation of whole stiffness matrix, only flexural 
stiffness EI, axial stiffness EA and shear stiffness GA 
are necessary to compute. Using appropriate beam 
theory, for example classical or Timoshenko, stiffness 
matrix can be assembled.  

For slender structures where only EI and EA are 
important a special semi- analytical approach are 
presented in next sub-chapter. 

Semi-analytical approach 
This method is recommended for the structures 

that have tendency to fail due to bending moment.  
Due to non-linear stress-strain relationship the 

position of neutral axis of cross section is dependent 
on bending moment and axial force acting in this 
cross section. It is assumed that classical Euler-
Bernoulli hypothesis of flat cross sections are true. 
Using this hypothesis, deformation field of cross 
section can be described with tension strains #$� , 
compression strains #$%, and position of neutral axis 
& (see figure 1). Those three unknowns are calculated 
by using three non-linear integral equations - 
'�, '�, '(.  

The first equation states the moment equilibrium 
of internal stress resultant and bending moment M in 
current cross section: 

 

'� = ) *�+� ∗ + ∗ ,�+� ∗ �+-�.
�. − / = 0       (2) 

 
For practical calculations the cross section is 

divided in many layer (usually 30 to 50), where i-th 
layer distance to neutral axis is +� and normal stress 
in this layer is *�, area of i-th layer is 0�. Total height 
of cross section is H. 

Y
i

X

H

H
-XAi

 
Figure 1. Multi-layer structure of reinforced concrete with smeared 
rebar’s layer. 

 
Rebars are replaced with equal area smeared 

layer.  
Second equation is obtained by using equilibrium 

of axial forces: 

'� = ) *�+� ∗ ,�+� ∗ �+-�.
�. − 1           (3) 
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The third equation is obtained by using assumption 
that strains on neutral axis #� are produced only by 
axial force: 

 

'( = ) 2�+� ∗ #� ∗ ,�+� ∗ �+-�.
�. − 1         (4) 

 
where 2� −modulus of elasticity of i-th layer. 
#�  is calculated by using linear interpolation of 
strains through the thickness of cross section:  
 

#� =
345∗-�.∗6347�3458

-
                    (5) 

 
Resulting system of three non-linear equations is 

solved by Newton-Raphson iterative method. When 
the strains and position of neutral axis are known, 
then flexural stiffness EI and axial stiffness EA are 
computed and used in non-linear beam finite element. 

Non-linear beam finite element 
In this work a typical 2 node beam finite element 

with 3 DOF (two translations and one rotation) per 
node are used. Total load is divided in 1$�9%$  load 
steps. Within each load step there are performed a 
modified Newton-Raphson iterations. Once the 
convergence norm of residual vector '  is less then 
tolerance than iterations stops and algorithm moves to 
next load step. 

 
' = ��:� − �9;�    (6) 

 
where ��:� - internal forces in nodes, �9;� - external 
forces in nodes. 

The secant stiffness matrix <$ is computed using 
Timoshenko or Euler- Bernoulli theory, depending 
ratio between span of beam and height of cross 
section: 
 

=> = ?�2@, A0, 20�                (7) 
 

The convergence difficulties are reduced by using 
non-local theory. Instead of local flexural stiffness, 
the smeared flexural stiffness 2@B  is used. This can 

solve the mesh dependency problem and also can 
include the tension stiffening effects.  

 
III.  RESULTS AND DISCUSSION 

The numerical results are validated using 
experimental measurements from publications [3,4]. 
Four point bending test of single span 3 m long beam 
and flexural test of two span beams (each span 2 m 
long) are analysed.  

Single span beam in four point bending 
Experimental data of four point bending test was 

taken from publication [3].    Beam was made  using 
C30/37 concrete, with cube compresive strength 
52.3MPa, modulus of elasticity 33.8 MPa and tensile 
strength 3.6 MPa.Tensile reinforcement was made of 
5 Ø9mm basalt rebars. Tensile strength of basalt 
rebars was 1485 MPa, modulus of elasticity 56.3 
GPa, and ultimate strain 2.62 %.  

In compression zone 2 Ø8mm B500SP steel 
rebars was used. Shear reinforcement was made of 
Ø8mm steel rebars with  100 mm step. Height and 
width of cross section was 300 and 200 mm, 
respectively.  Distance from center of rebars to 
surface of beam was 30 mm. Total length of beam 
was 3050 mm, distance between supports 2700 mm 
and distance between applied loads was 900 mm. 
Since the ratio beween span and cross section height 
is 9, extended multiscale approach was used. 

The load deflection curve is shown in figure  2. 
There was performed a 3 alternative numerial 
simulations- full finite element simulation, extended 
multiscale with embedding window length 
∗ = 0 
and  extended multiscale with embedding window 
length 
∗ = 90  mm. Simulations were done up to 
servicability limit state (assumed L/250). Up to 10 
KN load the full scale finite element simulation 
showed better agreement with experiments.  The 
simulation with extra window 
∗ = 90 mm, showd 
slightly overestimated stiffness comparing to 
experiments, when load exceeds 25 KN. The best 
agreement with experimetns was showd simulations 
with  window 
∗ = 0 , when load exceeds 25 KN.

 
Figure 2. Validation of model with experimental data, load-deflection curve, for beam with 5 basalt fibers, diameter 9 mm. 
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Figure 3. 3D visualization of flexural stiffness EI, depending 
displacement degrees of freedom of beam FE. Length of finite 
element was 250 mm. 
∗ = 0 

 
Figure 4. Contour plot of flexural stiffness EI, depending 
displacement degrees of freedom of beam FE. Length of finite 
element was 250 mm. 
∗ = 0 

  
Figure 5. 3D visualization of shear stiffness GA, depending 
displacement degrees of freedom of beam FE. Length of finite 
element was 250 mm. 
∗ = 0 
 

 
Figure 6. Contour plot of shear stiffness GA, depending 
displacement degrees of freedom of beam FE. Length of finite 
element was 250 mm. 
∗ = 0 
 

Databases of flexural and shear stiffness for beam 
finite element with length 250 mm and zero extra 
window length are shown in figures  3-6. Maximal 
flexural and shear stiffness 6000 �1 ∗ E�  and 
300000�1 , respectively, was observed at nearly 
zero degrees of freedom. The overall character of 
shear and flexural stiffness showed a similar 
tendency.  

The visualization of  damage evolution  is showed 
in figures 7-8. The damage is represented by damage 
variable, where 0 indicates no damage and 1 
complete damaged area. Experimental observation of 
damage evolution for similar beams are shown in 
figure 9. The tensile crack-damage propagation are 
similar with experimental data. The symmetry of 
structure was taken into account and only half of 
beam was modelled. 

 
 
 
 
 
 
 
 
 

 

 
Figure 7. Damage variable in compression ��. 
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Figure 8. Damage variable in tension ��. 
            

               
Figure 9. Typical experimental observation of basalt beam failure in four-point bending (figure taken from [1]). 
 

Two- span beam 
The numerical model was validate with 

continuous two 2000 mm span slab. All details are 
give in publication [4]. A concentrated loads were 
applied in the middle of each span. Thickness of slab 
was 150mm, width 500mm. Material properties were 
similar as for single span beam in previous section.  
Two cross sections were tested. The first cross 
section was made of 5 Ø10mm basalt rebars and 

denoted as C-B-OO. The second cross section was 
made of 3 Ø8mm basalt rebars and denoted as C-B-
UU.   Since the span to thickness ratio is 13.3, a semi-
analytical approach are used for numerical 
simulations.  In figure 10 is show the load-
displacement curve that shows good agreement 
between experiments and simulations even for load 
much higher than serviceability limit state. 

 
Figure 10. Load deflection curves of 2-span beams (experimental and theoretical) 
 
 

IV.  CONCLUSION 
An efficient numerical modelling framework for 

basalt rebar reinforced concrete is proposed. The 
method is based on precomputed database with 
stiffness characteristics such as flexural stiffness EI 
of the beam. Two alternative methods for 
computation of database are proposed. The first 
method is based on extended multi-scale finite 
element calculations for relatively thick beams, where 
shear cracks may appear. The second method is based 

on semi-analytical approach where the damage and 
cracks from bending moment and axial force are 
considered. The method is validated with 
experimental data from literature and showed good 
agreement with experiments. 
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