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Abstract—This article is devoted to a theoretical study of 
the processes in a sliding electrical contact and the derivation 
of the formula for constriction resistance in the transient 
layer of electrical sliding contact taking into account the 
fractal heterogeneity of contact current-transmitting 
clusters, as well as the verification of the obtained theoretical 
formulas using a static experimental plant.  

Keywords—brush, experimental plant, modeling, sliding 
contact.

I.	Introduction

Each scale of heterogeneity of the contact zone 
of a sliding electrical contact (SEC) corresponds to 
the component of the general constriction resistance 
[1]. R.Holm proposed to consider two components 
corresponding to the constriction to the group of spots and 
corresponding to the constriction within the boundary of 
this group. Equation for bodies with the same resistivity ρ 
containing one group of round uniformly distributed spots 
is derived:

 (1)
where n - the total number of contact spots; a - the 

radius of the spot; ak - the radius of the circle within 
which the contact spots are placed; R1, R2 - the resistance 
components corresponding to the constriction to the spots 
and to their groups.

J.A.Greenwod [18] specified clarified the second part 
of the equation:

 (2)
and showed that its value is almost the same for any 

location of contact spots in the general group.
The Greenwood equation was extended by terms 

that took into account the asymmetry of the spot groups 
distribution (clusters) on each other as well as the 

asymmetry of the groups distribution on the nominal area 
[2], [8-9], [21].

Theory of the electrofriction interaction is currently at 
a critical stage which is characterized by a large number of 
accumulated empirical data, hypotheses and various types 
of models that can not sufficiently claim the adequacy of 
the presentation of the studied phenomena. To overcome 
these contradictions, it is necessary to attract new physical 
views and ideas to this applied area of knowledge.

The theory of self-organizing systems (synergetics 
and the fractal theory) is rapidly developing nowadays. 
These systems are self-similar evolutionary structures 
which cannot be described using Euclidean geometry.

The synergetics studies the processes of self-
organization, of stability and of decay of structures of 
different nature formed in open systems, the ordered 
state of which is related to the consistent behavior of 
the subsystems. It leads to the formation of organized 
structures as a result of the exchange of energy and matter 
with the environment, when a certain balance between a 
production and a reduction of entropy is established [3-4], 
[11]. The evolution of the system considers as a transition 
through a number of thermodynamic quasi-equilibrium 
states. Fractal theory [5-6] was the basis for quantitative 
description of self-organizing structures using the fractal 
dimension parameter.

The processes of electrofrictional interaction will be 
considered from the standpoint of the synergetics and of 
the fractal theory, because the sliding electrical contact 
is an open system and evolutionary processes of the 
origin and decay of conducting clusters, which can be 
interpreted in the tangential direction as fractal and in the 
radial direction as percolation clusters, there are in the 
intermediate layer [6], [12], [17], [19-20].

From told above we can conclude that on the problem 
of explaining the mechanism of current transfer through 
sliding contact a one frame of mind has not yet developed. 
There are different interpretations of the processes of 
current transfer in the intermediate layer. It leads to the 
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fact that the most reliable and frequently used means of 
studying of the properties and of the characteristics of 
sliding contact today is an experiment. This situation is 
also due to the absence of modeling software products for 
calculating the basic integral characteristics of the sliding 
contact according to the data containing the parameters 
of contacting bodies, their surfaces, as well as external 
energy influences.

Therefore, work aimed at creating computational 
models that allow one to obtain static and dynamic 
characteristics of brush-contact device by calculation at 
the design stage are very relevant.

II. MATERIALS AND METHODS

The direct conductivity in the sliding contact occurs 
when the microasperities in the intermediate layer of 
the contacting microreliefs come into direct contact. 
In addition, we will assume that as a result of fritting, 
conductivity similar to the direct conductivity also occurs.

The main component of the transient resistance of the 
sliding electrical contact is the constriction resistance, 
which is caused by the distortion of the current lines in the 
region of each individual contact spot of rough surfaces. 
Many scientific works are devoted to studies of contact 
conductivity and constriction resistance, for example [7], 
[10], [23].

To determine the transient resistance in the 
computational models of the electrofriction interaction it 
is necessary to define a mathematical expression for the 
intermediate resistance of an individual contact cluster. 
Therefore, we will derive mathematical expressions 
that give a topological and fractal representation of the 
constriction resistance and compare the obtained results 
with the known ones.

In the simplified version of the calculation we will set 
a single round contact spot of radius ro. Such unification 
in a single area is acceptable with a sufficiently compact 
placement of conducting clusters. We will divide the 
surrounding half-space into two zone A and B for 
determination the constriction resistance. The zone A is 
bounded by the hemisphere of the spot of the contact with 
radius ro, and the zone B is bounded by the hemisphere 
with radius rm>> ro. Let’s call these areas in accordance 
with their placement of a relatively small “contact” 
hemisphere: A – “internal”, B – “external”.

A

r
rm

ro

2r

B

Fig.1. Approximate definition of the constriction resistance of the 
round spot of contact.

Selecting the volume located between two spheres 
with radius r+dr/2 and r–dr/2 in zone B we determine the 
resistance dRВ of this layer in the direction of the current 
lines:

 (3)

The current lines in zone B are directed radially and 
the specified spherical volume is limited by equipoten-
tial surfaces. In this case we assume that the current lines 
connect the superconducting spheres with radius ro and 
rm>>ro. Then the resistance RВ of the zone В is determined 
by integrating of the previous formula:

 (4)
Taking into account that rm >> rо, we find the “exter-

nal” component of the constriction resistance by the for-
mula:

 (5)

We define the “internal” component approximately 
from the consideration of replacing a hemisphere with a 
cylinder with the equivalent height and the same area of 
the base and with non-conducting side walls. We find the 
height of the cylinder by the condition of equality of the 
volumes of the hemisphere and the cylinder:

  (6)

Then the total constriction resistance is

 (7)

We calculate the “internal” resistance (hemisphere A) 
by integrating the conductivities of the elementary ring-
shaped areas shown in Fig. 2 to clarify the constriction 
resistance.

A 

ro 

r 

dr 

h dS 

Fig. 2. Clarifying constriction resistance.

The conductivity of the annular region dr is

 (8)
where   - the area of the horizontal cross section.

The conductivity of the sphere A is defined as follows:

     (9)
After integration within the given limits and after tran-
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sition to the inverse value we obtain an equation for the 
resistance of the zone A

 (10)
Then the constriction resistance is defined as the sum

 (11)

We obtain an underestimated value in the first ver-
sion of the calculation and an overestimated value in the 
second version of the calculation in comparison with the 
classical formulas.

The most correct result is obtained by integrating of 
the conductivity in all volume of the half-space. We select 
for this purpose in the zone B the elementary areas which 
are the difference of the volumes of two truncated cones 
with corners at the vertices: 2α и 2(α+dα)  (see Fig. 3).

0 

ro α 
l 

dr 

h 

x 

r 

dx 

dα 

S 

Fig. 3. Clarifying constriction resistance

The conductivity of the ring-shaped volume dx is

 (12)
For the zone В area S and a width  of the annular 

volume dr are:
S=2πr2sin α dα;  λ=rdα

Then the resistance of the volume of the angle dα of 
rotation in the zone B:

 (13)

We express the increment dx and coordinate x through 
the angle α:

 (14)
r = r0sinα;                                                 (15)

 (16)
The constriction resistance of the element will be 

found as the sum of the resistances of the elements of 
zones A and B:

 (17)
After transformations and simplifications we obtain

 (18)
Taking into account that rm>> ro the expression is 

simplified to

 (19)

The integration of the elementary volume conductivity 
dGretr is carried out within the limits giving the full 
coverage of the considered half-space:

 (20)

 (21)

 (22)

Then the total constriction resistance approximately is

 (23)
The exact formula is as follows:

 (24)

As we see, the expression (23) almost coincides with 
the Holm formula for the constriction resistance of the 
round contact pad.

Until now it was about the resistance of the continuous 
contact area. However, in reality, almost always contact 
spot is a fractal cluster of fractional dimension with 
imperfect boundaries [13], [15-16], [24]. In this case, 
the packing density of cluster elements ρкл and its 
fractal dimension D should be taken into account when 
determining the constriction resistance. The dimension D 
is not dependent on the shape of the cluster, or whether 
the package of its constituent monomers dense, random or 
slitted. The fractal dimension of a flat cluster is always less 
than 2, i.e. less than the size of the topological dimension 
of space. The packing density depends on the shape of 
the monomers. Thus, for close packed spheres is about  
, and at a random packing is reduced to 0,637. To cover 
a flat cluster with squares, and three-dimensional with 
cubes, we can assume that with an unlimited decrease of 
monomers, the packing density tends to the one. If the size 
of the element is r and the characteristic cluster size is rkl 
then we write:

 (25)

in the limit when ρkl→1,    where 
from
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 (26)

As the parameter of the cluster size, the radius of 
gyration is used. It is introduced by the ratio Rg=(<R2>)1/2  
, where R is the distance from the considered point of 
the cluster to its center of mass, angle brackets mean 
averaging over the distribution of particles in the cluster.

Expression (23) defines only half of the constriction 
resistance, since defined for half space. Therefore, the 
total resistance in the case of identical density ρ of the 
half-spaces is determined by the following expression

 (27)
For the spatial defining of clusters instead of the 

topological dimension, fractional fractal dimension 
is used. Therefore, the magnitude of the constriction 
resistance of the cluster depends on its fractal dimension. 
In view of the above, we write down the constriction 
resistance formula for fractional objects in the following 
form:

  Rretr kl=Rretr∙(rkl∙Df )  (28)

where Rretr kl is the constriction resistance of the fractal 
cluster, Rretr(rkl) is the constriction resistance of a circle 
with a radius equal to the characteristic size of the cluster 
rkl, for three-dimensional space 

Df is the cluster’s fractal dimension.
The proof of assertion (28) in general form is 

of considerable complexity. Therefore, a series of 
experimental studies was carried out to verify the above 
formula. The results of the experiments, as well as the 
derivation of the necessary mathematical expressions are 
given below.

Expression (28) becomes more versatile than the 
Holm, Ipa, Venart, and Greenwood formulas and makes 
it quite simple to calculate the constriction resistance of 
fractal clusters and multifractals. In this aggregation of 
limited clusters is carried out according to the criterion of 
their minimum distance from each other (no more than by 
the size of the characteristic size of the smaller cluster).

To determine the degree of adequacy of formula 
(28) a series of experiments was carried out on a flat 
model of current lines. The experimental plant is shown 
schematically in Fig. 4.
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Fig. 4. Experimental setup for measuring the constriction resis-
tance on the conductive plane.

A rectangular sheet of foiled textolite 1 has two copper 
layers 2 and 3 deposited on both planes. On one side of the 
sheet, along the edge of the electrically conductive layers, 
copper buses 4, 5 are soldered, to which two groups of 
conductors 6, 7 are attached. These groups of conductors 
are connected by other ends at points A and B, which 
are connected to an adjustable current source through 
ammeter A. On the other side of sheet 1, copper jumpers 8 
of width ℓ are installed, which may be several at different 
distances from each other. One jumper shown in the figure 
is a linear analogue of a flat circular contact spot. The 
constriction resistance of a single jumper is calculated 
according to the formulas, which are defined below.

Fig. 5 shows a quarter of the conducting plane, which 
is divided into two halves of a non-conductive straight 
line x containing a conducting segment of length 2ro.

0

r
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l
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h
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S

À
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õ

Fig. 5. To determination the constriction resistance on the plane.

The resistance of the flat portion dx of the inner 
constriction zone A:

 (29)

	 The increment dx and the x coordinate itself is 
expressed through the angle α:

dx=r0∙sin α dα  ;                      (30)
h=r0∙sinα;                               (31)

 (32)
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For the “outer” zone B of the half-plane, the width l 
of the annular volume dr is determined by formula l=r dα 
, and the resistance of the elementary part dr is

 (33)
Then the resistance of the ring sector with the angle 

dα is

 (34)
We find the resistance of the element as a sum

 (35)
The conductivity of the constriction element is

  (36)
The integration of the conductivity of the elementary 

volume dGretr will be done within the limits giving the full 
coverage of the considered plane:

 (37)

 (38)
Then the total constriction resistance is equal to

 (39)
For the cluster, taking into account the fractal 

dimension  , we get

 (40)
The characteristic cluster size rkl is defined as twice 

the radius of gyration, which is calculated as follows: 1) 
we find the radius of the mass center of the linear cluster

  (41)
where ri is the distance from the origin to the i-th 

element of the cluster; n is the number of cluster members; 
2) calculate the radius of cluster gyration:

 (42)
and find the numerical value of the fractal dimension:

 (43)
From the current source through the flat copper 

layers 2, 3 and jumper 8 the current I is conducted. 
Measurements of the potential difference on surfaces 2, 3 
by a millivoltmeter allow us to construct equipotentials 9 
and current lines 10.

III.	 RESULTS AND DISCUSSION
We will determine the constriction resistance in 

two ways. The first method is to use for calculation the 
measured voltage drops on the plane and the magnitude 
of the current I. The second method is based on applying 
formula (28) together with expressions (40–43).

In the second case, in the calculations we use only the 
geometric dimensions of the model and the magnitude 
of the resistivity of the electrically conductive layer. The 
accuracy of the coincidence of the calculation results 
of the constriction resistance, carried out in two ways 
for different clusters, determined by the location of the 
jumpers 8, allows us to view the adequacy of the proposed 
formula for calculating the constriction resistance.

The specific resistivity of the conductive layer was 
determined experimentally. For this purpose strap width 
S from foil-coated textolite was manufactured. Along it, 
a current was passed through the conducting layer (up to 
70 A) and the voltage drop ΔU was measured on a section 
of a layer of length L. Resistivity was calculated by the 
formula

 (44)
Multiple measurements with averaging gave the re-

sult ρ ≈ 57∙10-3  Ом.
	 Using the same copper jumpers width ℓ = 0.0012 

m linear conductive clusters of various configurations 
were created, for which the formulas (40-43) were 
calculated constriction resistance. The voltage drop was 
measured along a straight line perpendicular to the line of 
separation of the conducting plane and passing through 
the mass center of the cluster.

	 Using the same copper jumpers width ℓ = 0.0012 
m linear conductive clusters of various configurations 
were created, for which the formulas (40-43) were 
calculated constriction resistance. The voltage drop was 
measured along a straight line perpendicular to the line of 
separation of the conducting plane and passing through 
the mass center of the cluster.

Fig. 6-11 shows a the calculated and experimental 
dependences of the constriction resistance Rcr on the 
distance Rm to the center of mass of the cluster at which 
the voltage drop was measured.

Fig. 6. Dependences Rcr = f(Rm)(1-3 elements)
1 - 1 element, experiment, 2 - 1 element, calculate,

3 - 2 elements, experiment, 4 - 2 elements, calculate,
 5 - 3 elements, experiment, 6 - 3 elements, calculate

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume III, 201-207



206

 
Fig. 7. Dependences Rcr = f(Rm)(4 elements)

1 - 4 elements, experiment, 2 - 4 element, calculate

 
Fig. 8. Dependences Rcr = f(Rm)(5 elements)

1 - 5 elements, experiment, 2 - 5 element, calculate

Fig. 9. Dependences Rcr = f(Rm)(6 elements)
1 - 6 elements, experiment, 2 - 6 elements, calculate

 
Fig. 10. Dependences Rcr = f(Rm)(7 elements)

1- 7 elements, experiment, 2 - 7 elements, calculate

 Fig. 11. Dependences Rcr = f(Rm)(8-9 elements)
1 - 9 elements, experiment, 2 - 9 elements, calculate
3 - 8 elements, experiment, 4 - 8 elements, calculate

First the voltage drops ΔUo between the bus 5 and 
the centers of the jumpers 8 was measured. (These 
voltages are almost equal, since the cluster dimensions 
are significantly less than the distance to the bus). Then 
the voltage drops ΔUi between the bus 5 and selected 
points on the conductive plane 2 was measured. The 
following formula was used to calculate the experimental 
constriction resistance value.

 (45)

The theoretical value of the constriction resistance 
was found by the formula (40).

II.	 CONCLUSION

A comparison of experimental and theoretical data 
(Fig. 6–15) indicates a satisfactory rate of adequacy of 
the formula for the constriction resistance of a cluster, 
which uses the magnitude of the fractal dimension as a 
scaling factor. The difference between experimental and 
theoretical results does not exceed 5%. 
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