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Abstract—In this paper we examine the conservative 
averaging method (CAM) along the vertical z-coordinate for 
solving the 3-D boundary-value 2 layers diffusion problem. 
The special parabolic and hyperbolic type approximation 
(splines), that interpolate the middle integral values of 
piece-wise smooth function, is investigated. With the help of 
these splines the problems of mathematical physics in 3-D 
with respect to one coordinate are reduced to problems for 
system of equations in 2-D in every layer. This procedure 
allows reduce also the 2-D problem to a 1-D problem and 
the solution of the approximated problem can be obtained 
analytically. As the practical application of the created 
mathematical model, we are studying the calculation of the 
concentration of heavy metal calcium (Ca) in a two-layer 
peat block.

Keywords—conservative averaging method, finite-
difference method, diffusion problem, special splines.

Introduction

The boundary value problems (BVP) described 
by PDE with piece-wise coefficients in multi-layered 
domains are currently the subject of studies [4]. The 
interest is often caused by problems in itself, but even 
more interesting are their solutions: mainly numerical 
ones, because analytical solutions can only be obtained 
in the ordinary sense (without changing the number 
of dimensions of the boundary-value problem) in the 
simplest cases [2]. The article deals with a universal 
method for solving the second order of partial differential 
equations – a consider conservative averaging method 
(CAM), the essence of which is a reduction in the number 
of dimensions of a given BVP, with a view to obtaining 
analytical expressions (formulas) of the solution. The 
further solution of the BVP includes a repeated reduction 
in the number of dimensions or applying of numerical 
methods to solve the acquired BVP. The unknown 
function is replaced by the approximated solution – 

the special spline with two different functions, which 
interpolate the middle integral values of piece-wise 
smooth function. The functions of the hyperbolic type 
spline are created and used with parameters that have to 
be chosen in the appropriate way to decrease the error of 
approximation of the solution. It should be noted that, in 
limit case when the parameters of spline function tends to 
zero we have the integral parabolic spline, obtained from 
A.Buikis [3]. The 2-D boundary value problem obtained 
by the conservative averaging method (CAM) was solved 
numerically using the finite-difference method in the 
case of parabolic and hyperbolic splines. A test example, 
a solution to the given 3-D boundary value problem, 
was created for numerical approbation of the averaging 
method, where the unknown function was a solution to 
the corresponding 1-D boundary value problem for two 
ODEs. The solution of ODEs’ could be obtained both 
analytically (exact solution) and numerically by the 
averaging method using parabolic type and hyperbolic 
type splines. This in turn allowed a comparison of the 
analytical solution with the obtained numerical solutions.

Materials and methods

1.The Mathematical Model
The process of diffusion is considered in 3-D 

parallelepiped

( ){ }ZzLylxzyx ≤≤≤≤≤≤=Ω 0,0,0:,,
. The domain Ω  consists of two layer medium. 
We will consider the stationary 3-D problem of the 
linear diffusion theory for multilayered piece-wise 
homogenous materials of N  layers in the form 

( ){ } NixzzLylxzyx iii ,1,),(),,0(),,0(:,, 1 =∈∈∈=Ω −  
where 1−−= iii zzH  is the height of layer 
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Zzz Ni ==Ω ,0, 0 . The distribution of concentrations 
( )zyxcc ii ,,=  in every layer iΩ  at the point ( ) izyx Ω=,,  

should be calculated by solving the following partial 
differential equation(PDE):

 are constant diffusion coefficients, 
( )zyxcc ii ,,=  - the concentrations functions in every 

layer, ( )zyxfi ,,  - the fixed sources functions. The values 

ic and the flux functions  must be continuous 
on the contact lines between the layers 1,1, −== Nizz i :

ii zizi cc 1+= , ( ) ( )
ii ziziziiz zcDzcD ∂∂=∂∂ ++ // 11 (1.2)

where 1,1 −= Ni . The layered material is bounded above 
and below with the plane surfaces Zzz == ,0  with fixed 
boundary conditions in following form: 

( ) 0/0,,11 =∂∂ zyxcD z , ( ) ( )yxCZyxc aN ,,, = , (1.3) 

or ( ) ( )yxCyxc ,0,, 01 = , ( ) ( )yxCZyxc aN ,,, = , (1.4)

( )yxC ,0 , ( )yxCa ,  are the given concentration-func-
tions. 

We have two forms of fixed boundary conditions in 
the yx,  directions: 1) The periodical conditions by 

lxx == ,0  (1.5):
( ) ( )zylczyc ii ,,,,0 = , ( ) ( ) xzylcxzyc ii ∂∂=∂∂ /,,/,,0 ,

2) The symmetrical conditions by Lyy == ,0  (1.6): 
( ) ( ) 0/,,/,0, =∂∂=∂∂ yzLxcyzxc ii .

We will use the CAM and the finite difference (FD) 
method to solve the problem (1.1)-(1.6). These procedures 
allow reduce the 3-D problem to some 2-D boundary-val-
ue problem (BVP) for the system of partial differential 
equations with circular matrix in the x -direction. 

2.The conservative averaging method with para-
bolic splines

The equation of (1.1) are averaged along the heights iH  

of layers iΩ  and quadratic integral splines along z  co-
ordinate in the following form one used [3]

,        (2.1)

, ( ) 2/1 iii zzz += − . iii Cem ,,  - the un-
known coefficients of the spline-function, 

 - the average 

values of Nici ,1, = . 

After averaging the system (1.1) along every layer iΩ  

we obtain 

,      (2.2)

 - the average values of 

Nifi ,1, = . From (1.1), (2.1) using boundary conditions 

(1.3) we can determine the unknown functions ii em ,
. Therefore, from (2.2) we obtain the system of N  
partial differential equations (PDE), where the boundary 

conditions for iC  are determined from (1.4)-(1.5) in the 
yx, -directions for averaged values

( ) ( )ylCyC ii ,,0 = , ( ) ( ) xylCxyC ii ∂∂=∂∂ /,/,0     (2.3)

( ) ( ) 0/,/0, =∂∂=∂∂ yLxCyxC ii .              (2.4)

In the case 2=N  (two layers) we have   (2.5):

,

,

21 /GGk = .

We have from (2.2) the following system of two PDE

( ) ( )
( )
( ) ( )

( )













=+

+∂∂+∂∂

=+

+∂∂+∂∂

−

−

.0),(,2

/,/,

,0),(,2

/,/,

22
1

2

2
2

2
2

2
2

2
2

11
1

1

2
1

2
1

2
1

2
1

yxFyxeH

yyxCDxyxCD

yxFyxeH

yyxCDxyxCD

yx

yx

     (2.6)

After resolving (2.6), the concentration functions 
( )zyxcc ii ,,=  shall be obtained

,

.

From (1.3) it is obtained

( ) ( ) ( ) ( ) ( )( ) 101111 /,,23/,, HyxCyxCDyxeyxm z −+= ,

( ) ( ) ( ) ( ) ( )( ) 22222 /,,23/,, HyxCyxCDyxeyxm az −+−=

3.The conservative averaging method with 
hyperbolic type splines in 2 layers

The equation of (1.1) is averaged along the heights
iH of layers iΩ  using the hyperbolic type splines. 

Applying averaged method with respect to z  we use 
the approximate solution with two fixed parametrical 
functions 2,1,, 21 =iff ii
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( ) ( ) ( )
( )iii

iiiii
zzfyxe

zzfyxmyxCzyxc
−+

+−+=

2

1
),(

),(,,,
,

  - the averaged  values, 

according to the definition of the spline function 

,
( ) [ ]iiiii zzzzzz ,,2/ 11 −− ∈+= ,

,

,

2,1,
2/

)5.0sinh(5.0
== i

La
HaA

i

ii
i .

 0>ia  are fixed parameters (unknown). It should be 

noted if parameters ia  tend to zero then the integral 
parabolic spline from [3] is obtained in the limit case. The 

unknown functions ),(),,( yxeyxm ii  we can determined 

from boundary conditions at Zzz == ,0 : 

011111 5.0 CbeHmC z =+−

az CbeHmC =++ 22222 5.0

 

( ) ( )zzzzzz kedmDkedmD 2222211111 −=+

zz beHmCbeHmC 2222211111 5.05.0 +−=++ ,

( ) 11111 /2 HebCm z+= . 

Thus we have a system of 2 algebraic equations for deter-

mining 2,1, =iei :

, , where 

, , 

, , , , 

. 

The solution for 21,ee  is:

, , where 

, 

,  ,

, , ,

, ,

.

The 2-D boundary-value problem is in following form:

(3.1)

where 1115 /2 HkDb zz= , 2226 /2 HkDb zz= .

4.The finite-difference method for two layers with 
parabolic type splines

We consider an uniform grid ( )( )1+× yx NN  [7],

( ) ( )












==+=

=−==
=

LhNlhNNj

Nihjyihxyx

yyxxy

xyjxiji
h

,,1,1

,,1,1,,,
ω .

Subscripts ( )ji,  refer to yx,  indices; the mesh spac-

ing in the ji yx ,  directions is xh , yh . For two layers (

2=N ) we can the PDEs (2.6) rewritten in following 
vector form:

,   (4.1) 

where yx DD , are the 2 order diagonal matrices with 

elements xx DD 21 , and yy DD 21 , . A  is the matrix of 
second order, C is the 2nd order vectors-column with 

elements 21,CC  and F  is the 2 order vectors-column 
with following elements :

( )( ) ( )
( )( ) ( )

T

a

a
dHCCkF

dHCCkF











−++
−+− −

1201

110
1

1
/336

/336
,

, 

( )121 GGd += . The equation (4.1) with periodical 
conditions (2.4) for vector function C  in the uniform 

grid ( )ji yx ,  is replaced by vector difference equations 
of second order approximation in 3- point stencil [1]: 

011 =++− +− jjjj FWBBWCCWAA ,   (4.2)

where jW  are vectors-column 

( )( )T
jNjjj x

CCCW ,,2,1 ,...,,≈ , jF  are vectors-column 

with elements ( ) y
T

jNjj NjFFF
x

,2,,...,, ,,2,1 =

,  are the block- matrices of second 
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order with the elements of the circular symmetric matrix 

with MN x = -order in the following form (it is possible 
to define the circular matrix with the first row that is in 

the form [ ]MaaaA ,...,2,1= ):

[ ]
[ ]









=

0,...,0,/0

00,...,0,/
2

2

2
1

yy

yy
hD

hD
AA ,

 







=

43

21
cccc
cccc

CC ,

where the circular matrices 4321 ,,, cccccccc are

 

.

The boundary conditions (2.4) are replaced by dif-
ference equations of first order approximation: 

( ) ( ) ( )20,, yy hOxChxC += ,  ( ) ( ) ( )2,, yy hOhLxCLxC +−= .

5.The finite-difference method for two layers with hy-
perbolic type splines

The vector F  and matrix A  in (4.1) are

065451 CdbCdbF a ++ , 076562 CdbCdbF a ++ , 

, where

, , , 

.

The circular matrices icc are 

 

  

.

We use .
6. The numerical methods

The vectors-column jW  from (4.2) is calculated on 
Thomas algorithm [9] in the matrix form using MAT-
LAB.

1)1(,01 −==+= + yjjjj NjYWXW ,   (6.1)

where jj YX ,  are corresponding matrices and vectors, 

obtaining of following expressions (6.2):

( ) jjjjj BBXAACCX 1
1
−

−−= , 

( ) ( ) yjjjjjjj NjFYAAXAACCY )1(2,1
1 =+−= −

−

Here EX =1 , v, ( ) NNN YXEW 1
1

−
+ −= , ( )yNN = ,

where 
[ ]

[ ]






=

0,...,0,10
00,...,0,1

E .

The inverse matrix of 







=

43

21
AA
AA

A is 

, 







=

43

21
BB
BB

B , where 

( ) 1
2

1
1344

−−−= AAAAB , 42
1

12 BAAB −−= , 

( ) 1
3

1
4211

−−−= AAAAB , 13
1

43 BAAB −−= . 
The others operations with circular matrices and vectors 
of the second order can be easy obtain [6]. 

Results and discussion
1. Approbation of numerical algorithms

The special solution in the form 

)/2sin()/cos()(),,( 11 lxLyzgzyxc ππ= , 

)/2sin()/cos()(),,( 22 lxLyzgzyxc ππ=  of the PDE 

(1.1) was designed, where functions )(),( 21 zgzg  was 
the solution of the following boundary value problem for 
two ODE (for boundary condition (1.3)):

0)()( 1
2
11 =−′′ zgazg , 0)0(1 =g , 0)()( 2

2
22 =−′′ zgazg

, 1)(2 =Zg , )()( 1211 HgHg = ,         (7.1)

)()( 122111 HgDHgD zz ′=′ , where

 z
yx D

L

D

l

D
a 12

1
2
1

1 /
4











+= π ,

z
yx D

L

D

l

D
a 22

2
2
2

2 /
4











+= π .

The analytical solution of boundary-value problem of 
ODEs (7.1) is [5]:

)sinh()( 111 zaPzg = ,                          (7.2)

)sinh()cosh()( 23222 zaPzaPzg += , where the 
constants are:

( ) ( )
( )11

123122
1 sinh

sinhcosh
Ha

HaPHaPP +
= ,

( )
( )Za

ZaPP
2

23
2 cosh

sinh1−
= ,
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( )( )
( )

( ) ( )( )
( ) ( )( )zz

zz

z
z

DaDaHaHa
DaDaHaHa

DaHaHa
DaHaa

P

22111122
22111211

221122
11121

3

coshsinh
sinhsinh

sinh
cosh

−
−

+
+

−
=

.

Based on the literature source [4], it can be proofed 
that the solution to the BVP (7.1), obtained by hyperbolic 
spline function, coincides with the analytical (exact) 
solution (7.2) of the BVP (7.1).

2. Some numerical results
Measurements of peat samples for the determination of 
heavy metals – iron and calcium concentrations were 
carried out in the swamp of the Vilani municipality 
Knavu swamp. Peat analyses have been performed 
with the OPTIMA 2100 MS ICP/OES Spectrometer 
of the inductively associated plasma optic emission 
spectrometer of the Perkin Elmer firm in the laboratories 
of the Geotechnology and Eco-Industrial Research Centre 
of Rezekne Academy of Technologies [8]. We consider 
the metal concentration in the 2 layered peat blocksΩ  
with following measure:

mlL 1== , mH 11 = , mH 5.12 = , 

mHHZ 5.221 =+= .

On the top of the earth ( )Zz =  we have the measured 

concentration  of calcium (Ca) in the 

following points in the ( )yx,  plane: 

,  ,

 , ,

 , , 

, ,

 . 

This date are smoothing by 2D interpolation with 
MATLAB operator, using the spline function. We use 
following diffusion coefficients in the layers:

, , , 

. We can see the distribution of con-

centration c  in the ( )yx,  plane for Ca at 1Hz =  for 
hyperbolic (Fig. 1) and parabolic (Fig. 2) spline.  

We can see the distribution of concentration c  in the 

( )yx,  plane for Ca at 1Hz =  for hyperbolic (Fig. 1) 
and parabolic (Fig. 2) spline, in the Fig. 3 – the aver-

aged concentration 2C  within the second layer for hy-
perbolic spline, in the Fig. 4 – concentration’s c  curves 
at 2/Ly = for hyperbolic spline.  

Fig. 1. Levels of c at 1Hz =  for hyperbolic spline.

 Fig. 2. Levels of c at 1Hz =  for parabolic spline.
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 Fig. 3.The averaged concentration 2C  
within the second layer for hyperbolic spline.
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Fig. 4. Concentration’s c  curves at 2/Ly = for hyperbolic spline. 
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Conclusions

1. The 3D diffusion problem in N  layered domain 
described by a boundary value problem of the 
system of PDEs with piece-wise constant diffusion 
coefficients are approximated on the boundary 
value problem of a system of N  PDEs. The 
last mentioned system is solved due to the finite 
difference method.

2. For reducing the 3D diffusion problem to 2D 
boundary value problem of a system of PDEs the 
conservative averaging method (CAM) along 
the vertical z-coordinate by using parabolic type 
splines and newly designed special hyperbolic and 
type splines is studied.

3. The calculation process compared the effectiveness 
of the parabolic and hyperbolic splines usage for 
3D diffusion problem reduction to 2D boundary 
value problem and resulted in higher accuracy of 
the approximated solution directly with hyperbolic 
type splines.

4. A Test example has been created allowed a 
comparison of the analytical (exact) solution of the 
1-D BVP with the numerically obtained solutions of 
parabolic type splines and hyperbolic type splines, 
to assess their accuracy. It was found that the 
solution obtained by hyperbolic splines functions 
coincided with the analytical solution of the 1-D 
problem under consideration. This indicates the 
usefulness of the further usage of the CAM for 
solving BVP problems with the hepl of hyperbolic 
type splines compared to the previously widely 
used parabolic type splines.

5. The theoretical and practical problem studied makes 
it possible to obtain an engineering algorithm for 
mathematical modelling mass transfer processes in 
multilayered domain.

6. The results of the numerical experiments can 
give some new physical conclusions about the 
distribution of metals concentration in different 
layered peat blocks.
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