
170

Analysis of Artificial Intelligence Applications
for Automated Testing of Video Games

Imants Zarembo
Faculty of Engineering

Rezekne Academy of Technologies
Rezekne, Latvia

imants.zarembo@rta.lv

Abstract—Game testing is a software testing process
for quality control in video games. Game environments,
sometimes called levels or maps, are complex and interac-
tive systems. These environments can include level geome-
try, interactive entities, player and non-player controllable
characters etc. Depending on the number and complexity of
levels, testing them by hand may take a considerable effort.
This is especially true for video games with procedurally
generated levels that are automatically created using a spe-
cifically designed algorithm. A single change in a procedural
generation algorithm can alter all of the video game levels,
and they will have to be retested to ensure they are still
completable or meet any other requirements of the game.
This task may be suitable for automation, in particular us-
ing Artificial Intelligence (AI). The goal of this paper is to
explore the most promising and up-to-date research on AI
applications for video game testing to serve as a reference
for anyone starting in the field.

Keywords—Artificial Intelligence, Software Testing, Test
Automation, Video Game Testing.

I.	 Introduction

Video game industry has seen a major expansion in
recent years with the number of games being produced
rapidly increasing and global games market value rising
year over year and reaching $134.9 billion in 2018 [1].
Video game development complexity has grown over the
years as well, starting from early generations consisting
of simplistic or no graphics at all and restricted to a
limited number of commands entered through a keyboard,
to modern games with realistic graphics and highly
interactive scenarios. This increase in complexity has led
to an increase in effort required to ensure quality. Testing
is an essential quality assurance activity in software
engineering. Software testing is a process of evaluation
of the functionality of a software application with an
intent to find out whether the developed software meets
the specified requirements and to identify defects. In
comparison with general software development, video
game quality assurance must take into consideration
several additional aspects, such as [2][3]:

•	 Fun factor testing;
•	 Balance testing;
•	 Game level/World testing;

•	 AI testing;
•	 Multiplayer/Network testing;
•	 Audio testing;
•	 Physics testing etc.

Due to increasing demand from game development
companies, many video games use procedural generation
techniques to generate content [4] to ensure quality and
quantity of the content, thus increasing replay value. An
example of such procedural generation is game levels
which can be automatically created using specifically
designed algorithms, which means that player can have
new game levels every time he starts the game. Such
game levels consist of level geometry, interactive entities,
player and non-player characters etc. Testing procedurally
generated levels by hand may take a considerable effort
and may be a suitable task for automation, in particular
using AI for playtesting.

Test automation is a widely used technique of employing
special software to control the execution of tests and the
comparison of actual outcomes with predicted outcomes.
Although automated testing still has its challenges [5] it
is widely used in the software development industry for
quality assurance. In comparison automated testing in
video game development is a less common practice. One
reason for that is the fact that video games consist not only
from source code but also from assets such as 3D models,
textures, sound, music, maps, puzzles etc. [6]. Traditional
software quality assurance techniques are not applicable
in this case.

The goal of this paper is to explore the most promising
and up-to-date research on AI applications for video game
testing to serve as a reference for anyone starting in the
field. This analysis is the first step in research on creating
a framework for automated video game level testing using
AI, that would be applicable to procedurally generated
video game level testing and validation with as little
external involvement as possible. Such an approach would
allow game developers to allocate more development
time to other parts of the project and provide more value
for their customers.

Print ISSN 1691-5402
Online ISSN 2256-070X

http://dx.doi.org/10.17770/etr2019vol2.4158
© 2019 Imants Zarembo.

 Published by Rezekne Academy of Technologies.
This is an open access articleunder the Creative Commons Attribution 4.0 International License.

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II, 170-174

171

II.	 Related Work

A number of approaches have been proposed in the
literature to test video games. There is a considerable
number of video game testing techniques available that do
not rely on traditional software testing techniques. Iftikhar
et al. [7] in their paper propose a model-based testing
approach for automated black box functional testing of
platform games. Peterson et al. [8] present a system and
method for performing external and automated testing
of video games. Cho et al. [9] propose a system which
supports black-box testing and scenario-based testing as
well as simple load testing.

Only automatic or semi-automatic approaches
focusing on those that use AI were of interest for purposes
of this research. Nantes et al. [10] in their work propose
a general software framework that integrate Artificial
Intelligence Agents and Computer Vision technologies to
support the test team and help to improve and accelerate
the test process. The agent can replicate the user actions
previously tracked in an older version of the game to
check for visual anomalies in a newer build of the game.
This approach allows making regression test process
for environments automatic with no need for any other
information about the internal architecture of the game.
Gudmundsson et al. [11] present an approach to learn
and deploy human-like playtesting in computer games
based on deep learning from player data. The proposed
approach is able to learn and predict the most “human”
action in a given position through supervised learning on
a convolutional neural network. The learned network can
be used to predict key metrics of new content. The main
focus of the approach is on estimating the difficulty of a
new level instead of quality assurance of it. Chan et al.
[12] present an approach to use evolutionary learning of
behaviour to improve testing of commercial computer
gamers.

A.	 Human playing style imitation
One of the uses of human playing style imitation in

video games is to understand how a particular player
would have played some game content without having the
player taking the time to play through the game content
[13]. This is especially useful in search-based procedural
content generation, where a simulation-based evaluation
function uses an AI to play through the candidate game
content, assigning a numerical fitness value depending on
how playable the content is. The fitness of the level might
depend on whether an AI can play through the level or
not. This can be used to evaluate content, to test game
levels to see if they have bugs and whether they could
be completed by a human player. In their paper Ortega et
al. compare several different methods for imitating human
player behaviour outlined in the following paragraphs.

1)	 Heuristic
A very simple approach that is based on hand-coded

rules that features no learning and ignores the game
environment. An example of this approach would be an
NPC which simply moves in a certain direction and jumps
whenever possible.

2)	 Artificial neural networks
An artificial neural network (ANN) can be used

to simulate human behaviour. A supervised learning
ANN approach makes use of direct representation by
using the game environment information obtained from
human gameplay as training set [14]. This approach
uses backpropagation to minimize the error between
human player actions and ANN outputs. A neuro-
evolutionary approach attempts to minimize a fitness
value corresponding to the mean squared error distance
from the desired output (human actions) [15].

3)	 Dynamic scripting
Dynamic scripting (DS) is an online competitive

machine-learning technique for game AI, that can be
characterized as stochastic optimization [16]. DS contains
a rule base with the possible rules that can be applied to
a game. Each rule has a weight which reflects how well
that rule made the agent perform in prior games. In every
game, a script is generated using roulette-wheel in order
to select a small subset of the rules in the rule base. The
agent will play according to the rules contains in the script
and those will have their weights updated via a standard
Widrow-Hoff delta rule which is based on the immediate
reward received by the environment.

4)	 REALM
REALM is a rule-based evolutionary computation

agent for playing a modified version of Super Mario Bros
[17]. REALM follows the principle of learning classifier
systems, by which rules are evolved according to a fitness
value. Each rule contains conditions based on different
information obtained from the game. REALM classifier
includes high-level plans of action instead of simple
reactive combinations of key presses.

5)	 Grammatically evolved behaviour trees
Behaviour trees provide a top-down organization from

the root of the tree down to the leaves [18]. The control
nodes are those that decide which branches of the tree will
be executed next, while the leaf nodes contain the actions
that are going to be carried out. The different elements of
the tree are specified in a grammar which is evolved by
applying genetic operations to the sub-tree created. While
the evolutionary mechanism is similar to that used in
neuroevolution, the behaviour tree representation differs
significantly from both neural networks and dynamic
scripting.

B.	 Playtesting with procedural personas
Archetypal player models called procedural personas

can be used for generative player modelling and automatic
testing of game content [19]. The approach uses a variant
of Monte Carlo tree search with genetic programming
applied to trees instead of Upper Confidence Bound 1 to
evolve persona-specific evaluation formulas. This allows
finding mappings between persona utility functions and
state evaluation algorithms.

In [20] authors present a method where procedural
personas act as critics in search-based procedural content
generation framework. For this purpose, personas have

Zarembo. Analysis of Artificial Intelligence Applications for Automated Testing of Video Games

172

been evolved on a set of authored dungeons, according
to different fitness that matches archetypical decision-
making priorities.

C.	 ICARUS
Intelligent Completion of Adventure Riddles via

Unsupervised Solving [21] is a framework for autonomous
video game playing, testing and bug reporting which is
based on discrete reinforcement learning in a dualistic
fashion, encompassing volatile short-term memory as
well as persistent long-term memory that spans across
distinct game iterations. It can iterate through complete
game iterations and detect or aid the detection of all major
bug categories.

D.	 Hyper-heuristics
Hyper-heuristics approach [22] consists of the creation

of hyper-agent for general video game playing that
utilizes the strengths of multiple individual controllers to
play unseen games better than any of them individually.
The hyper-agent uses an offline learning approach by
acquiring information about controller performance from
a set of trained instances and create a selection model that
generalizes well for new games. Hyper-agent does not
directly control the main character but selects the best
controller to do so.

E.	 Rolling horizon evolution
Rolling Horizon Evolutionary Algorithms (RHEA)

[23] are an alternative to Tree Search for action-decision
making in real-time games. Evolutionary Algorithms are
used in conjunction with a simulator to train a controller
offline and the use the already evolved controller to play
the game. RHEA approaches employ evolution in a
similar way to how it is done in a tree search, using a
forward model to evaluate a sequence of actions.

F.	 Active learning
Active learning selects among a set of possible inputs

to get the best output while minimizing the number of
inputs tested. Authors of [24] define the best output as a
parameter tuning design goal and treat a set of game design
parameters as an input. Minimizing the number of inputs
tested minimizes the number of playtests performed.

G.	 Genetic algorithms
In [25] Genetic algorithms are explored to learn levels

from the Mario AI simulator, which is based on Infinite
Mario Bros game. Agents learn a sequence of actions by
using a genetic algorithm with integer encoding, in order
to maximize the attained score after ending the level.
This approach executes two different stages: in the first,
domain-independent genetic operators are used, while in
the second knowledge about the domain is incorporated
into these operations in order to improve results.

III.	 Materials and Methods

Existing research in this field was analysed and
synthesised based on whether the described approaches

were applicable to automated video game testing using
AI. First, research on manual video game testing and
testing that does not focus on application of AI was
discarded. Then research on automated video game
playing using AI was included as automating video game
playing and testing are similar tasks and partially overlap
in many cases. Finally, an OWL ontology containing a
semantic representation of the results of this research was
constructed using Protégé and is described in the following
section. As automated video game testing research field is
relatively new (especially using AI, but in general as well)
the main purpose of the ontology is to serve as a starting
point for future research in the field.

IV.	 Results and Discussion

Automated video game testing using AI is relatively
new research field often lacking established terminology
and structure. This research tries to give overview of
automated video game testing approaches and proposes a
simple categorization of approaches.

Fig. 1.	 Spectrum of design testing methods in game development [19].

Fig. 1. Shows the position AI agent-based playtesting
takes in the spectrum of video game testing methods right
between informal playtesting and structured playtesting.

Analysed video game testing approaches can be
broadly categorized into three categories:

1)	 Human imitation approaches
Human imitation approaches strive to imitate human

players in some way to produce results similar to those a
human would produce playtesting. This is the most well
researched and widely used category of the overviewed
approaches. There appears to be a connection between
general game AI research that strives to create AI for non-
player characters in games that exhibit a behaviour similar
to that of human players, and automated video game
testing where the quality of video game content must be
assured. In both cases, autonomous AI agents can be used
to play the game but with different goals in mind.

2)	 Scenario-based approaches
Scenario-based approaches at least partially rely

on previously prepared data and rules to decide further
course of actions – which scenario to follow, e.g. dynamic
scripting, REALM.

3)	 Goal-based approaches
Approaches that rely on defining game goals for AI

agents to reach fall into this category, e.g. hyper-heuristics,
reinforcement learning etc.

A.	 Ontology
An OWL ontology was constructed categorizing video

game testing approaches analysed in this paper (see Fig.
2).

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II, 170-174

173

Fig. 2.	 Automatic video game testing approach ontology

Root node of the ontology starts from “Software
Testing” class, which include “Video Game Testing”
subclass, followed by “Automated Testing Approach”
subclass. Three main subclasses of “Automated Testing
Approach” are “Goal Based”, “Human Imitation” and
“Scenario Based”. All of the analysed testing approaches
are included in one of these categories.

For the sake of visualization simplicity of the ontology
video game testing approaches were included as classes
instead of individuals.

B.	 Performance
Video game playtesting technique performance and

efficiency was out of scope of this paper, the original papers
should be consulted for more detail. Alternatively, The
General Video Game AI (GVGAI) [26] is a competition
to explore the problem of creating controllers for general
video game playing. The competition has rankings in
several categories:

•	 Single-player planning;

•	 Level generation;

•	 Rule generation;

•	 Two-player planning;

•	 Single-player learning.

Depending on the game to be tested exploring
these categories may yield well performing appropriate
approaches for the task at hand.

V.	 Conclusions and Future Work

The paper provides an overview of existing automated
video game testing approaches and serves as the first step
in research of automated procedurally generated game
level testing using AI. The vast majority of the analysed
approaches of video game testing automation rely on
playtesting to produce the results. This research would
benefit from more comprehensive analysis including
available techniques in connected fields that may be
applicable for automated videogame testing but have not

yet been adapted for this task.

Future work includes several tasks: defining
requirements for the testing automation task to solve;
narrowing down the most promising approaches to further
analyse, implement and compare their performance;
creation of a research prototype of a game which levels
an AI agent can test and produce a report; expanding and
refining the video game testing approach ontology.

References

[1]	 J. Batchelor, “GamesIndustry.biz presents... The Year In Numbers
2018,” December, 2018. [Online]. Available:
h t tps : / /www.games indus t ry.b iz /a r t ic les /2018-12-17-
gamesindustry-biz-presents-the-year-in-numbers-2018
[Accessed: Feb. 12, 2019].

[2]	 L. Levy and J. Novak, “Game Development Essentials: Game QA
& Testing,” Cengage Learning, 2009, pp.58-70.

[3]	 C. P. Schultz and R. D. Bryant, “Game Testing: All in One,”
Mercury Learning & Information, 2016, pp.125-128.

[4]	 M. Hendrikx, S. Meijer, J. V. D. Velden and A. Iosup,
“Procedural content generation for games: A survey,” ACM
Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 9, Feb 2013.

[5]	 A. Bertolino, “Software Testing Research: Achievements,
Challenges, Dreams,” Proceedings of The Future of Software
Engineering at ICSE 2007, pp. 85-103, 2007.

[6]	 J. H. Becares, L. C. Valero and P. P. G. Martin, An approach to
automated videogame beta testing,” Entertainment Computing,
vol. 18, pp. 79-92, Jan 2017.

[7]	 S. Iftikhar, M. Z. Iqbal, M. U. Khan and W. Mahmood, “An
automated model based testing approach for platform games,”
The 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS), Nov 2015.

[8]	 K. Peterson, S. Behunin and F. Graham, “Automated Testing on
Multiple Video Game Platforums,” U.S. Patent 13/020,959, 4
Feb., 2011.

[9]	 C. S. Cho, K. M. Sohn, C. J. Park and J. H. Kand, “Online Game
Testing Using Scenario-based Control of Massive Virtual Users,”
The 12th International Conference on Advanced Communication
Technology (ICACT), Feb. 2010.

[10]	 A. Nantes, R. Brown and F. Maire, “A Framework for the Semi-
Automatic Testing of Video Games,” Artificial Intelligence and
Interactive Digital Entertainment (AIIDE) 2008.

[11]	 S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S.
Purmonen, B. Kozakowski, R. Meurling and L. Cao, “Humsn-
Like Playtesting with Deep Learning,” IEEE Conference on
Computational Intelligence and Games (CIG), Aug. 2018.

[12]	 B. Chan, J. Denzinger, D. Gates, K. Loose and J. Buchanan,
“Evolutionary behavior testing of commercial computer games,”
Proceedings of the 2004 Congress on Evolutionary Computation,
Jun. 2004.

[13]	 J. Ortega, N. Shaker, J. Togelius and G. N. Yannakakis,
“Imitating human playing styles in Super Mario Bros,”
Entertainment Computing, vol. 4, pp. 93-104, Apr. 2013.

[14]	 A. J. Champandard, “The Dark Art of Neural Networks,” in “AI
Game Programming Wisdom,” S. Rabin, Charles River Media,
2002, pp. 640-651.

[15]	 D. Floreano, P. Durr and C. Mattiussi, “Neuroevolution: from
architectures to learning,” Evolutionary Intelligence, Springer,
vol. 1, pp. 47-62, Mar. 2008.

[16]	 P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper and E. Postma,
“Adaptive game AI with dynamic scripting,” Machine Learning,
Springer, vol. 63, pp. 217-248, Mar. 2006.

[17]	 S. Bojarski and C. B. Congdon, “REALM: A rule-based evolu-
tionary computation agent that learns to play Mario,” Proceed-
ings of the 2010 IEEE Conference on Computational Intelligence
and Games, Aug. 2010.

[18]	 A. J. Champandard, “Understanding Behav-
ior Trees,” Spetember, 2007. [Online]. Avail-
able: http://aigamedev.com/open/article/bt-overview/
[Accessed: Feb. 17, 2019].

Zarembo. Analysis of Artificial Intelligence Applications for Automated Testing of Video Games

174

[19]	 C. Holmgard, M. C. Green, A. Liapis and J. Togelius, “Automat-
ed Playtesting with Procedural Personas through MCTS with
Evolved Heuristics,” CoRR, 2018.

[20]	 A. Liapis, C. Holmgard, G. N. Yannakakis and J. Togelius, “Pro-
cedural Personas as Critics for Dungeon Generation,” European
Conference on the Applications of Evolutionary Computation, pp.
331-343, 2015.

[21]	 J. Pfau, J. D. Smeddinck and R. Malaka, “Automated Game Test-
ing with ICARUS: Intelligent Completion of Adventure Diddles
via Unsupervised Solving,” CHI PLAY Extended Abstracts, pp.
153-164, 2017.

[22]	 A. Mendes, J. Togelius and A. Nealen, “Hyper-heyristic general
video game playing,” IEEE Conference on Computational Intelli-
gence and Games (CIG), 2016.

[23]	 D. Perez, S. Samothrakis, S. Lucas and P. Rohlfshagen, “Rolling
horizon evolution versus tree search for navigation in single-play-
er real-time games,” Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pp. 351-358, Jul. 2013.

[24]	 A. Zook, E. Fruchter and M. O. Riedl, “Automatic playtesting for
game parameter tuning via active learning,” Foundations of Dig-
ital Games, 2014.

[25]	 A. Baldominos, Y. Saez, G. Reico and J. Calle, “Learning Levels
of Mario AI Using Genetic Algorithms,” Conference of the Span-
ish Association for Artifical Intelligence, pp. 267-277, 2015.

[26]	 D. Perez, S. Samothrakis, J., Togelius, T. Schaul and S. M. Lucas,
“General Video Game AI: Competition, Challenges and Oppor-
tunities,” Association for Advancement of Artificial Intelligence
(AAAI), 2016.

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II, 170-174

