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Abstract - Modern cloud-based information technology 
(IT) infrastructure monitoring context and data are gathered 
from various systems. Typical monitoring systems provide a 
set of metrics characterizing the performance and health of 
a variety of infrastructure components. To understand the 
dependencies and relations among these measurements, the 
infrastructure topology can be analysed to provide context to 
the monitoring metrics. However, the metrics and the 
topology are updated at different time intervals and 
providing continuous merging and analysis of both data sets 
is a challenging task which is rarely addressed in the 
scientific literature. The paper elaborates a method for 
integration of infrastructure topology graph and monitoring 
metric data streams. The method is intended for application 
in the identification of anomalies in IT infrastructure. 

Keywords - infrastructure monitoring, infrastructure 
topology, stream processing, evolving graphs 

I. INTRODUCTION 
Modern information technology infrastructure is highly 

complex, and it consists of several subsystems such as 
software defined and physical network, software defined 
and traditional storage systems, physical servers, 
hypervisors, container orchestration platforms, and cloud 
computing platforms. Each of the infrastructure 
subsystems have a corresponding topology graph of 
infrastructure components with their corresponding 
metadata (e.g., allocated RAM for a certain virtual machine 
or characteristics of drives used in a storage system) and 

rapidly changing metrics of infrastructure components 
(e.g., input/output operations per second for a logical or 
physical drive). A typical large IT infrastructure generates 
millions of events per day at rates of about 100 events per 
second [1] and an averaged sized cloud has around 1000 
tenants and 100,000 users) [2].  

To monitor the entire IT infrastructure as a whole while 
taking into consideration the interrelationships of certain 
IT infrastructure components from different subsystems, 
all topology graphs and component level metrics and their 
corresponding time series data should be merged and 
analysed. Such analysis is a computationally and 
algorithmically complex task since massive amounts of 
data with different update intervals and data models need 
to be processed while minimizing the latency. Moreover, 
upon identifying a certain anomaly, the respective IT 
infrastructure components such as virtual machines or 
containers might have already been disposed and therefore 
removed from the infrastructure topology graph, which is 
why versioning of the topology graph is required for 
incident traceability purposes. 

The objective of this article is to propose a method for 
providing infrastructure topology graph versioning and 
topology aware analysis of infrastructure component 
metrics.  

The paper is structured as follows. Section II presents a 
method for providing topology aware processing of 
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infrastructure component time series data and topology 
graph versioning. Section III proves the applicability of the 
proposed solution by presenting a practical implementation 
of the method in Apache Spark, Kafka, Cassandra, and 
Neo4j. Section IV reviews related research and Section V 
concludes with final remarks. 

II. METHOD OVERVIEW 
This section presents a method for integrating evolving 

IT infrastructure topology graphs and IT infrastructure 
component related time series data. A high-level overview 
of the proposed approach is given in Fig. 1.  

 
Fig. 1. Overview of the proposed method. 

The given example considers three subsystems of IT 
infrastructure – a hypervisor, storage, and network. Each 
of them contains an associated topology graph which can 
be retrieved via API calls specific to the concrete 
subsystem. Such calls are computationally intensive and 
put a significant load on the respective subsystem, which is 
why their frequency needs to be limited depending on the 
performance characteristics of the specific subsystem. 
Furthermore, topology graphs can evolve in varying speeds 
depending on the type of subsystem. For instance, a 
topology graph corresponding to traditional storage 
equipment would experience significantly less updates 
compared to a graph originating from a container 
orchestration platform such as Kubernetes, where 
containers are initialized and disposed without any manual 
intervention. Our experience shows that the full topology 
graph retrieved from the respective subsystem contains a 
large number of vertices and edges, which are irrelevant for 
IT infrastructure monitoring purposes. 

There are also time series data originating from the 
subsystems characterized by high velocity, volume and 
different schema. It is important that elements whose 
properties are constantly being measured in the time series 
data can be linked to certain nodes or edges in the 
infrastructure topology. 

Topology and time series data need to be collected from 
the respective subsystems, what is done by the data 
collection component (depicted as connection #1 in Fig. 1). 
The following approaches can be applied for this purpose: 

• Data pull – data collection component constantly 
queries the respective subsystem to get the time 
series data or topology graph. This approach is 
inefficient in terms of performance since 
subsystems are queried even if no changes have 
occurred. The advantage of this approach is relying 
on already existing APIs or log file structure and 
avoiding customization of infrastructure subsystem 
management.  

• Data push – component of the subsystem or its 
management layer is customized to send the data to 
the data collection component upon receival of new 
data.  This allows to distribute the load between the 
components (such as virtual machines) and achieve 
higher velocity of the data. It is complex to 
implement data push in the case of topology graph 
monitoring, since it would require extending the 
management layer of the respective subsystem. 

• Reverse proxy – this strategy can be applied for 
continuous versioning of the topology graph 
without making any changes in the management 
layer and avoiding putting any additional 
computational load on the respective subsystem. 
This can be applied for subsystems where changes 
in the topology graph are made through a 
management web service. For instance, virtual 
machines are built through the web portal of the 
cloud computing platform, which in turn calls a 
management REST web service to trigger the 
creation of a new virtual machine, thus triggering 
an update in the topology graph. Putting a reverse 
proxy in front of the REST web service would 
allow to detect such events and alter the topology 
graph without directly querying the management 
layer of the subsystem. This approach can be used 
for detecting incremental graph updates; however, 
it would still be necessary to use APIs for 
establishing the initial state of the topology graph. 

The data collection component feeds time series data 
into the Distributed event streaming platform (depicted as 
connection #2 in Fig. 1), filters out unnecessary topology 
graph data, and stores topology graph updates  inside a 
graph database as a combined data centre level topology 
graph (depicted as connection #3 in Fig. 1). Separate topics 
are created in the Distributed event streaming platform for 
each topology component related metric (e.g., a dedicated 
topic for drive input/output operations per second). 
Component identifiers form the message key, while 
measurements are stored in the value section. It is advisable 
to use event time in the event message. 

The distributed analysis platform provides processing 
of both topology graphs and time series data. It is done 
based on predefined analysis rules, which regulate: 
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• graph topology processing for retrieving subgraphs 
specific to the concrete analysis rule (e.g., all virtual 
machines and their corresponding hypervisors), 

• time series data processing while linking certain 
infrastructure components based on the topology 
subgraph (e.g., link misbehaving virtual machine 
with a connected overloaded logical drive, and its 
physical drives). 

Graph topology processing functionality of each 
infrastructure analysis rule includes the following: 

• Graph query – a query to get the rule-related 
subgraphs from the graph database (depicted as 
connection #5 in Fig. 1) 

• Graph hash calculation – a function for calculating 
a hash of a subgraph. This is used for detecting any 
structural changes in the graph. 

• Get a graph ID – a function for calculating a unique 
identifier for each subgraph. Changed subgraph 
hash for a particular graph ID indicates structural 
changes in the specific subgraph. 

• Graph serialization – a function of serializing the 
graph and storing it in the temporal database as a 
revision of the graph. 

Graph topology processing is performed by the Distributed 
analysis platform and the serialized subgraph revisions, 
their corresponding hashes, IDs, and timestamps are stored 
in the Time series database (depicted as connection #7 in 
Fig. 1).  

 Time series data analysis functionality of each 
infrastructure analysis rule is concerned with the 
following: 

• Retrieval of time series data streams from the 
relevant topics of the Distributed event streaming 
platform (depicted as connection #4 in Fig. 1). 

• Retrieval of the topology subgraph from the Time 
series database. 

• Deserialization of the time series data and topology 
graph, merging of both data sets according to the 
logic specified in the rule (e.g., calculation of 
average disk writes within a single logical disk as 
the average of all corresponding physical drives). 

• Performing windowing operations and 
aggregations, storing intermediate stream 
processing results in temporal topics of the 
Distributed event streaming platform Experiments 
(depicted as connection #8 in Fig. 1). 

• Archiving time series data aggregations in the Time 
series database for batch processing and later 
analysis (depicted as connection #7 in Fig. 1). 

• Passing information about the detected anomalies 
as a data stream to a topic in the Distributed event 

processing platform (depicted as connection #8 in 
Fig. 1). 

A specific stream consumer is created for reacting upon the 
detected anomalies and it is deployed in the adjustment 
engine (depicted as connection #9 in Fig. 1). 

 Hierarchical rules can be created so that an 
infrastructure rule operating on a higher level of abstraction 
uses the anomaly feed provided by an infrastructure 
analysis rule operating on a lower level of abstraction. 

III. EXPERIMENTS 
To prove the applicability of the proposed approach, a 

prototype containing a single infrastructure analysis rule is 
implemented.  

Neo4j is used as the graph database to store the joint 
topology of a storage subsystem (IBM Storwize) and 
virtualization subsystem (Vmware vCenter). Apache 
Kafka is used as the Distributed event processing platform. 
For experiment purposes, the time series data is 
accumulated in CSV files and a data simulator class is 
implemented in Python programming language to provide 
a controlled environment with expectable results and to 
simulate anomalies according to a predefined experiment 
plan. Apache Cassandra is used as the Time series 
database, while Apache Spark serves the purpose of 
Distributed analysis platform.  

The sample infrastructure analysis rule considers 
identifying anomalies in a physical drive belonging to a 
common logical drive. This is based on the assumption that 
the storage subsystem manages to distribute load efficiency 
between the physical drives forming a logical drive, 
therefore a notable difference in physical drive 
performance metrics could be seen as an indication of a 
faulty drive or an anomaly.  The list of monitored metrics, 
each of which are being streamed to a separate Kafka Topic 
are given in Table I.  

TABLE I.  Physical drive metrics 

# 
Disk drive metrics 

Acronym Description 

1. driveStats.mdsk.pre 
Indicates the peak of read 
external response in 
milliseconds for each MDisk 

2. driveStats.mdsk.pro 
Indicates the peak of read 
queued response in 
milliseconds for each drive. 

3. driveStats.mdsk.pwe 
Indicates the peak of write 
external response in 
milliseconds for each drive. 

4. driveStats.mdsk.pwo 
Indicates the peak of write 
queued response in 
milliseconds for each drive 

5. driveStats.mdsk.re 
Indicates the cumulative read 
external response in 
milliseconds for each drive. 

6. driveStats.mdsk.rq 
Indicates the cumulative read 
queued response in 
milliseconds for each drive 
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Fig. 2 shows the average driveStats.mdsk.pre 
value within a logical drive, anomaly margins calculated as 
three standard deviations away from the average value, and 
individual values for two included physical drives, one of 
which is an anomaly. It can be observed that drive with 
identifier driveStats_124 behaves normally, while 
the drive with identifier driveStats_26 is 
experiencing potentially abnormal behaviour. 

 
Fig. 2. Anomaly for a physical drive. 

The implementation of the graph topology processing 
logic for the mentioned rule is given bellow. 

from hashlib import md5 
from typing import Type 
from ..abstract_rule.AbstractGraphJob import 
AbstractGraphJob 
from .CassandraModel import DiskAnomalies 
 
class GraphJob(AbstractGraphJob): 
 cassandra_model: = None 
 ruleName = "disk_anomalies" 
 
 def init__(self, **kwargs): 
  self.cassandraModel = DiskAnomalies 
  self.graphQuery = """Match (drive:           
  storwize_drive)-[:RELATED] 
  (mdisk:storwize_mdisk) return      
  mdisk.metricTopoId,  
  collect(drive.metricTopoId)""" 
  AbstractGraphJob.__init__(self, **kwargs) 
 def getSubgraphHash(self, subgraph): 
  return md5("|". join(subgraph[1]). 
  encode('utf-8')).hexdigest() 
 
 def _getSubgraphId(self, subgraph): 
  return subgraph[0] 
 

 def _getSerializedGraph(self, subgraph): 
  return {'drives': subgraph[1], 
  'mdisk': subgraph[0]} 

 

The provided name of the rule is used to create Apache 
Cassandra tables for the current version of the topology 
subgraphs and their previous revisions. The referenced 
DiskAnomalies class further specifies the data model 
used for serializing the topology subgraph, while the actual 
serialization is performed by the function 
getSerializedGraph, which shows that the 
serialized graph will have two attributes – drives (an array 

of the physical drives) and mdisk (the logical disk which 
the physical drives belong to). 

 
Fig. 3. Matched topology subgraphs for disk anomaly rule. 

The graph query specified in graphQuery attribute 
of the class finds all topology nodes which are tagged as 
“storwize drive” (physical drive) and are connected to a 
node tagged as “storwize mdisk” (logical disk). Tabular 
representations of the matched subgraphs are returned, 
where an identifier stored in the graph node attribute 
metricTopoId is returned for each matched node. 
Visualization of matching subgraphs is given in Fig. 3, 
while an excerpt from tabular representations of the 
matched subgraphs is given in  Fig. 4. 

 

 

Fig. 4. Excerpt from tabular representation of topology subgraphs for 
disk anomaly rule. 

The graph ID is equal to the ID of the corresponding 
mdisk (logical disk), while its hash is calculated as md5 
encoded list formed by the identifiers of the included 
physical drives. The AbstractGraphJob class that the 
topology processing class of the disk anomaly rule extends 
provides built-in functionality for storing serialized 
subgraphs in Cassandra tables and creating new revisions 
upon detected changes in the graph hash. An ER diagram 
for two tables created to store serialized subgraphs is given 
in Fig. 5. 
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Fig. 5. ER diagram for the two created topology subraph tables. 

The disk_anomalies table contains the current 
versions of the existing subgraphs and their corresponding 
information. Graph processing job tracks the time at which 
the subgraph appeared first in the time_from column, 
while the time_to column contains the last time the 
specific graph was detected. Following is the pseudocode 
of the algorithm for versioning of the subgraphs. 

Update disk_anomalies set processed = False 
Select all matched subgraphs from Neo4j 
For each returned subgraph do 
 If graph_id does not exist in table   
 disk_anomalies 
  Insert subgraph into disk_anomalies 
   Else if graph_id exists in disk_anomalies 
    If subgraph hash matches stored hash 
     Update time_to to current time, set     
     processed = True 
    Else if subgraph hash has changed 
     Copy stored subgraph to revisions table 
     Update the subgraph in disk_anomalies    

 table, set processed = True 
Select subgraph from disk_anomalies where 
unprocessed = True 
 For each returned subgraph: 
  Copy stored subgraph to revisions table 
  Delete stored subgraph from disk_anomalies 
 

 The time series data analysis is implemented as an 
Apache Spark job and operates according to the following 
logic: 

• Create a Spark dataframe anomaly_margins 
with drive metric corresponding anomaly margins. 
It will be  evaluation how many standard deviations 
away is the average value of a drive metric from the 
average value of the corresponding mdisk (logical 
disk) metric. If the value is greater than the value 
specified within the anomaly margin dataframe, it 
will be considered an anomaly. 

• Create a Spark dataframe drive_mdisks from 
Cassandra disk_anomalies table. 

• Create drive metric Spark data stream 
drive_metrics from Kafka topics that 
correspond to the physical drive metrics of interest. 
The data stream contains unprocessed drive metrics 
as received from the IBM Storwize subsystem. 

• Update the drive_metrics data stream by 
joining it with drive_mdisks dataframe so that 

it now contains a corresponding mdisk ID for each 
drive. 

• Create a new Spark data stream 
drive_averages from the drive_metrics 
stream by calculating an average value per drive 
per metric within a 10 second tumbling window. 
Save results to a new Kafka topic 
da_drive_averages. 

• Create a new Spark data stream 
mdisk_averages from the drive_metrics 
stream by calculating an average value and 
standard deviation per logical disk, per metric 
within a 10 second tumbling window. Save results 
to a new Kafka topic da_mdisk_averages. 

• Create two new Spark data streams based on the 
Kafka topics da_mdisk_averages and 
da_drive_averages and join them into a new 
data stream joined_df based on the time 
window, metric name and logical disk, so that for 
each average metric value of a physical drive there 
is a corresponding average value of the logical disk 
and its standard deviation. 

• Join the joined_df with anomaly_margins 
so that for each metric there is a corresponding 
anomaly margin available as a new column 
stdev_margin. 

• Add a new column stdev_diff to the 
joined_df which measures how many logical 
disk standard deviations away is the physical drive 
average metric value from logical disk’s average 
value. 

• Filter rows from joined_df where 
stdev_diff > stdev_margin. 

• Group by drive and time window, count the number 
of rows per disk and collect the names of the 
anomaly metrics inside a new column. Output the 
results to a new Kafka topic disk_anomalies. 

During the experiment, the IT infrastructure monitoring 
process is simulated and anomalies are induced. An extract 
from a Kafka console consumer connected to the 
disk_anomalies topic is given in Fig. 6. It can be seen 
that an anomaly is detected for the physical drive ext-
virt3-storage_driveStats_26 and a total of 6 
anomalies was observed for the given drive. The names of 
the corresponding metrics are given in the 
anomaly_metrics array, while window_start and 
window_end indicate the start and end of the aggregation 
window. 



Jānis Kampars, et al. On Integration of Evolving Infrastructure Topology Graphs and Metric Data Streams in 
Information Technology  Infrastructure Management 

 
67 

 
Fig. 6. Detected physical drive anomalies. 

IV. RELATED WORK 
Two types of data can be considered when analysing IT 

infrastructure for the purpose of detecting anomalies and 
providing predictive maintenance – evolving infrastructure 
graphs and time series data describing various IT 
infrastructure components.  Existing research papers 
mostly concentrate on one of the aspects – either topology 
or time series data analysis. One of the few exceptions is 
the paper by Kampars et al. [3] concentrating on both data 
sets. The time series data are referenced as measurable 
properties, while aggregations are called context elements. 
The proposed solution lacks the ability to retrieve the 
topology graph from a data source and it is constructed 
manually. The system is based on Apache Kafka, Apache 
Spark and Apache Cassandra. Topology related 
information is stored in Cassandra and no dedicated graph 
database is being used. 

A. Topology based infrastructure analysis 
An example of topology driven anomaly detection can 

be found in the work by Niwa et al. [4], who present a 
framework for identifying anomalies in software services 
of OpenStack cloud computing platform. The framework 
is implemented in Python and Neo4J is used as the graph 
database for storing the topology graph.  

Topology based root cause analysis of an IT 
infrastructure failure is also addressed by Schoenfisch et al. 
[5], who propose a Markov Logic Networks and abductive 
reasoning based solution. The proposed system was 
implemented in RoCA, a tool providing a graphical user 
interface for modelling the infrastructure and conducting 
the root cause analysis. 

Majumdar et al. [2] perform IT infrastructure analysis 
for security purposes and propose a solution that is able to 
identify topology inconsistencies that might occur between 
multiple subsystems of a cloud computing platform. The 
proposed system gathers data from cloud management 
systems, cloud infrastructure system, and data centre 
infrastructure components. The data collection is 
performed in batch mode.  

The security threats caused by cloud platform 
misconfiguration or insider attacks are addressed by 
Bleikertz et al. [6]. The authors establish a security system, 
which proactively analyses the intended cloud 
infrastructure configuration changes and risks associated 
with them and then either approves or rejects them. The 
graph is constantly updated whenever changes in 
infrastructure configuration occur [7]. 

A construction of a cloud-based IT infrastructure 
topology graph is addressed by Mensah et al. [8]. Logs 

from Cloud Management System and Software Defined 
Network controller are scanned to detect events that alter 
the infrastructure topology graph. The proposed system is 
validated by using OpenStack cloud computing platform. 

B. Time series based infrastructure analysis 
Harper et al. [1] propose a method for detecting failures 

of individual infrastructure elements based on the received 
operational status data and alerts. The work concentrates 
on detecting cascading infrastructure errors are without any 
knowledge of the infrastructure topology.  

Mijumbi et al. [9] propose a system for analysing 
communication system alarms. The system is built using 
Apache Kafka, MongoDB, and python data science tools 
such as sklearn, pandas, numpy.   

Anomaly detection and root cause analysis is also 
addressed by Lin et al. (2016). The paper proposes a 
method for virtualized cloud data centres and addresses the 
scalability challenges by using Apache Spark.  

Another clustering-based anomaly detection solution is 
proposed by Cucinotta et al. [9] The authors perform 
analysis of system-level metrics, mostly related to resource 
consumption patterns of virtual machines by using self-
organizing maps (SOM) based approach.  

V. CONCLUSION 
The paper presents a method for performing IT 

infrastructure analysis based on both metric time series 
data and evolving IT infrastructure topology graph. The 
applicability of the proposed approach is proven by 
implementing a prototype aimed at identifying physical 
drive anomalies in IT infrastructure and it is based on 
Apache Spark, Kafka, Cassandra, Neo4J and Python 
programming language.  

The method allows combing topology data and time 
series data for comprehensive analysis of anomalies in the 
complex IT infrastructure. The analysis is performed in 
real-time and extra computational load  on the 
infrastructure is minimized. The method also uses efficient 
versioning to track changes in the dynamic topology.  

Identification of anomalies depends on predefined 
rules. These rules are derived by means of data analysis and 
expert knowledge. In further research, a set of rules will be 
derived, and the method will be evaluated to determine its 
computational efficiency and anomalies detection power. 
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