
Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 62-68

Online ISSN 2256-070X
https://doi.org/10.17770/etr2021vol2.6607

© 2021 Jānis Kampars, Jānis Grabis, Ralfs Matisons, Artjoms Vindbergs.
Published by Rezekne Academy of Technologies.

This is an open access article under the Creative Commons Attribution 4.0 International License.

62

On Integration of Evolving Infrastructure
Topology Graphs and Metric Data Streams in

Information Technology Infrastructure
Management

Jānis Kampars
Riga Technical University

Riga, Latvia
janis.kampars@rtu.lv

Artjoms Vindbergs
TET

Riga, Latvia
artjoms.vindbergs@tet.lv

Jānis Grabis
Riga Technical University

Riga, Latvia
janis.grabis@rtu.lv

Ralfs Matisons
Riga Technical University

Riga, Latvia
ralfs.matisons@rtu.lv

Abstract - Modern cloud-based information technology
(IT) infrastructure monitoring context and data are gathered
from various systems. Typical monitoring systems provide a
set of metrics characterizing the performance and health of
a variety of infrastructure components. To understand the
dependencies and relations among these measurements, the
infrastructure topology can be analysed to provide context to
the monitoring metrics. However, the metrics and the
topology are updated at different time intervals and
providing continuous merging and analysis of both data sets
is a challenging task which is rarely addressed in the
scientific literature. The paper elaborates a method for
integration of infrastructure topology graph and monitoring
metric data streams. The method is intended for application
in the identification of anomalies in IT infrastructure.

Keywords - infrastructure monitoring, infrastructure
topology, stream processing, evolving graphs

I. INTRODUCTION
Modern information technology infrastructure is highly

complex, and it consists of several subsystems such as
software defined and physical network, software defined
and traditional storage systems, physical servers,
hypervisors, container orchestration platforms, and cloud
computing platforms. Each of the infrastructure
subsystems have a corresponding topology graph of
infrastructure components with their corresponding
metadata (e.g., allocated RAM for a certain virtual machine
or characteristics of drives used in a storage system) and

rapidly changing metrics of infrastructure components
(e.g., input/output operations per second for a logical or
physical drive). A typical large IT infrastructure generates
millions of events per day at rates of about 100 events per
second [1] and an averaged sized cloud has around 1000
tenants and 100,000 users) [2].

To monitor the entire IT infrastructure as a whole while
taking into consideration the interrelationships of certain
IT infrastructure components from different subsystems,
all topology graphs and component level metrics and their
corresponding time series data should be merged and
analysed. Such analysis is a computationally and
algorithmically complex task since massive amounts of
data with different update intervals and data models need
to be processed while minimizing the latency. Moreover,
upon identifying a certain anomaly, the respective IT
infrastructure components such as virtual machines or
containers might have already been disposed and therefore
removed from the infrastructure topology graph, which is
why versioning of the topology graph is required for
incident traceability purposes.

The objective of this article is to propose a method for
providing infrastructure topology graph versioning and
topology aware analysis of infrastructure component
metrics.

The paper is structured as follows. Section II presents a
method for providing topology aware processing of

https://doi.org/10.17770/etr2021vol2.6607
https://creativecommons.org/licenses/by/4.0/

Jānis Kampars, et al. On Integration of Evolving Infrastructure Topology Graphs and Metric Data Streams in
Information Technology Infrastructure Management

63

infrastructure component time series data and topology
graph versioning. Section III proves the applicability of the
proposed solution by presenting a practical implementation
of the method in Apache Spark, Kafka, Cassandra, and
Neo4j. Section IV reviews related research and Section V
concludes with final remarks.

II. METHOD OVERVIEW
This section presents a method for integrating evolving

IT infrastructure topology graphs and IT infrastructure
component related time series data. A high-level overview
of the proposed approach is given in Fig. 1.

Fig. 1. Overview of the proposed method.

The given example considers three subsystems of IT
infrastructure – a hypervisor, storage, and network. Each
of them contains an associated topology graph which can
be retrieved via API calls specific to the concrete
subsystem. Such calls are computationally intensive and
put a significant load on the respective subsystem, which is
why their frequency needs to be limited depending on the
performance characteristics of the specific subsystem.
Furthermore, topology graphs can evolve in varying speeds
depending on the type of subsystem. For instance, a
topology graph corresponding to traditional storage
equipment would experience significantly less updates
compared to a graph originating from a container
orchestration platform such as Kubernetes, where
containers are initialized and disposed without any manual
intervention. Our experience shows that the full topology
graph retrieved from the respective subsystem contains a
large number of vertices and edges, which are irrelevant for
IT infrastructure monitoring purposes.

There are also time series data originating from the
subsystems characterized by high velocity, volume and
different schema. It is important that elements whose
properties are constantly being measured in the time series
data can be linked to certain nodes or edges in the
infrastructure topology.

Topology and time series data need to be collected from
the respective subsystems, what is done by the data
collection component (depicted as connection #1 in Fig. 1).
The following approaches can be applied for this purpose:

• Data pull – data collection component constantly
queries the respective subsystem to get the time
series data or topology graph. This approach is
inefficient in terms of performance since
subsystems are queried even if no changes have
occurred. The advantage of this approach is relying
on already existing APIs or log file structure and
avoiding customization of infrastructure subsystem
management.

• Data push – component of the subsystem or its
management layer is customized to send the data to
the data collection component upon receival of new
data. This allows to distribute the load between the
components (such as virtual machines) and achieve
higher velocity of the data. It is complex to
implement data push in the case of topology graph
monitoring, since it would require extending the
management layer of the respective subsystem.

• Reverse proxy – this strategy can be applied for
continuous versioning of the topology graph
without making any changes in the management
layer and avoiding putting any additional
computational load on the respective subsystem.
This can be applied for subsystems where changes
in the topology graph are made through a
management web service. For instance, virtual
machines are built through the web portal of the
cloud computing platform, which in turn calls a
management REST web service to trigger the
creation of a new virtual machine, thus triggering
an update in the topology graph. Putting a reverse
proxy in front of the REST web service would
allow to detect such events and alter the topology
graph without directly querying the management
layer of the subsystem. This approach can be used
for detecting incremental graph updates; however,
it would still be necessary to use APIs for
establishing the initial state of the topology graph.

The data collection component feeds time series data
into the Distributed event streaming platform (depicted as
connection #2 in Fig. 1), filters out unnecessary topology
graph data, and stores topology graph updates inside a
graph database as a combined data centre level topology
graph (depicted as connection #3 in Fig. 1). Separate topics
are created in the Distributed event streaming platform for
each topology component related metric (e.g., a dedicated
topic for drive input/output operations per second).
Component identifiers form the message key, while
measurements are stored in the value section. It is advisable
to use event time in the event message.

The distributed analysis platform provides processing
of both topology graphs and time series data. It is done
based on predefined analysis rules, which regulate:

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 62-68

64

• graph topology processing for retrieving subgraphs
specific to the concrete analysis rule (e.g., all virtual
machines and their corresponding hypervisors),

• time series data processing while linking certain
infrastructure components based on the topology
subgraph (e.g., link misbehaving virtual machine
with a connected overloaded logical drive, and its
physical drives).

Graph topology processing functionality of each
infrastructure analysis rule includes the following:

• Graph query – a query to get the rule-related
subgraphs from the graph database (depicted as
connection #5 in Fig. 1)

• Graph hash calculation – a function for calculating
a hash of a subgraph. This is used for detecting any
structural changes in the graph.

• Get a graph ID – a function for calculating a unique
identifier for each subgraph. Changed subgraph
hash for a particular graph ID indicates structural
changes in the specific subgraph.

• Graph serialization – a function of serializing the
graph and storing it in the temporal database as a
revision of the graph.

Graph topology processing is performed by the Distributed
analysis platform and the serialized subgraph revisions,
their corresponding hashes, IDs, and timestamps are stored
in the Time series database (depicted as connection #7 in
Fig. 1).

 Time series data analysis functionality of each
infrastructure analysis rule is concerned with the
following:

• Retrieval of time series data streams from the
relevant topics of the Distributed event streaming
platform (depicted as connection #4 in Fig. 1).

• Retrieval of the topology subgraph from the Time
series database.

• Deserialization of the time series data and topology
graph, merging of both data sets according to the
logic specified in the rule (e.g., calculation of
average disk writes within a single logical disk as
the average of all corresponding physical drives).

• Performing windowing operations and
aggregations, storing intermediate stream
processing results in temporal topics of the
Distributed event streaming platform Experiments
(depicted as connection #8 in Fig. 1).

• Archiving time series data aggregations in the Time
series database for batch processing and later
analysis (depicted as connection #7 in Fig. 1).

• Passing information about the detected anomalies
as a data stream to a topic in the Distributed event

processing platform (depicted as connection #8 in
Fig. 1).

A specific stream consumer is created for reacting upon the
detected anomalies and it is deployed in the adjustment
engine (depicted as connection #9 in Fig. 1).

 Hierarchical rules can be created so that an
infrastructure rule operating on a higher level of abstraction
uses the anomaly feed provided by an infrastructure
analysis rule operating on a lower level of abstraction.

III. EXPERIMENTS
To prove the applicability of the proposed approach, a

prototype containing a single infrastructure analysis rule is
implemented.

Neo4j is used as the graph database to store the joint
topology of a storage subsystem (IBM Storwize) and
virtualization subsystem (Vmware vCenter). Apache
Kafka is used as the Distributed event processing platform.
For experiment purposes, the time series data is
accumulated in CSV files and a data simulator class is
implemented in Python programming language to provide
a controlled environment with expectable results and to
simulate anomalies according to a predefined experiment
plan. Apache Cassandra is used as the Time series
database, while Apache Spark serves the purpose of
Distributed analysis platform.

The sample infrastructure analysis rule considers
identifying anomalies in a physical drive belonging to a
common logical drive. This is based on the assumption that
the storage subsystem manages to distribute load efficiency
between the physical drives forming a logical drive,
therefore a notable difference in physical drive
performance metrics could be seen as an indication of a
faulty drive or an anomaly. The list of monitored metrics,
each of which are being streamed to a separate Kafka Topic
are given in Table I.

TABLE I. Physical drive metrics

Disk drive metrics

Acronym Description

1. driveStats.mdsk.pre
Indicates the peak of read
external response in
milliseconds for each MDisk

2. driveStats.mdsk.pro
Indicates the peak of read
queued response in
milliseconds for each drive.

3. driveStats.mdsk.pwe
Indicates the peak of write
external response in
milliseconds for each drive.

4. driveStats.mdsk.pwo
Indicates the peak of write
queued response in
milliseconds for each drive

5. driveStats.mdsk.re
Indicates the cumulative read
external response in
milliseconds for each drive.

6. driveStats.mdsk.rq
Indicates the cumulative read
queued response in
milliseconds for each drive

Jānis Kampars, et al. On Integration of Evolving Infrastructure Topology Graphs and Metric Data Streams in
Information Technology Infrastructure Management

65

Fig. 2 shows the average driveStats.mdsk.pre
value within a logical drive, anomaly margins calculated as
three standard deviations away from the average value, and
individual values for two included physical drives, one of
which is an anomaly. It can be observed that drive with
identifier driveStats_124 behaves normally, while
the drive with identifier driveStats_26 is
experiencing potentially abnormal behaviour.

Fig. 2. Anomaly for a physical drive.

The implementation of the graph topology processing
logic for the mentioned rule is given bellow.

from hashlib import md5
from typing import Type
from ..abstract_rule.AbstractGraphJob import
AbstractGraphJob
from .CassandraModel import DiskAnomalies

class GraphJob(AbstractGraphJob):
 cassandra_model: = None
 ruleName = "disk_anomalies"

 def init__(self, **kwargs):
 self.cassandraModel = DiskAnomalies
 self.graphQuery = """Match (drive:
 storwize_drive)-[:RELATED]
 (mdisk:storwize_mdisk) return
 mdisk.metricTopoId,
 collect(drive.metricTopoId)"""
 AbstractGraphJob.__init__(self, **kwargs)
 def getSubgraphHash(self, subgraph):
 return md5("|". join(subgraph[1]).
 encode('utf-8')).hexdigest()

 def _getSubgraphId(self, subgraph):
 return subgraph[0]

 def _getSerializedGraph(self, subgraph):
 return {'drives': subgraph[1],
 'mdisk': subgraph[0]}

The provided name of the rule is used to create Apache
Cassandra tables for the current version of the topology
subgraphs and their previous revisions. The referenced
DiskAnomalies class further specifies the data model
used for serializing the topology subgraph, while the actual
serialization is performed by the function
getSerializedGraph, which shows that the
serialized graph will have two attributes – drives (an array

of the physical drives) and mdisk (the logical disk which
the physical drives belong to).

Fig. 3. Matched topology subgraphs for disk anomaly rule.

The graph query specified in graphQuery attribute
of the class finds all topology nodes which are tagged as
“storwize drive” (physical drive) and are connected to a
node tagged as “storwize mdisk” (logical disk). Tabular
representations of the matched subgraphs are returned,
where an identifier stored in the graph node attribute
metricTopoId is returned for each matched node.
Visualization of matching subgraphs is given in Fig. 3,
while an excerpt from tabular representations of the
matched subgraphs is given in Fig. 4.

Fig. 4. Excerpt from tabular representation of topology subgraphs for
disk anomaly rule.

The graph ID is equal to the ID of the corresponding
mdisk (logical disk), while its hash is calculated as md5
encoded list formed by the identifiers of the included
physical drives. The AbstractGraphJob class that the
topology processing class of the disk anomaly rule extends
provides built-in functionality for storing serialized
subgraphs in Cassandra tables and creating new revisions
upon detected changes in the graph hash. An ER diagram
for two tables created to store serialized subgraphs is given
in Fig. 5.

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 62-68

66

Fig. 5. ER diagram for the two created topology subraph tables.

The disk_anomalies table contains the current
versions of the existing subgraphs and their corresponding
information. Graph processing job tracks the time at which
the subgraph appeared first in the time_from column,
while the time_to column contains the last time the
specific graph was detected. Following is the pseudocode
of the algorithm for versioning of the subgraphs.

Update disk_anomalies set processed = False
Select all matched subgraphs from Neo4j
For each returned subgraph do
 If graph_id does not exist in table
 disk_anomalies
 Insert subgraph into disk_anomalies
 Else if graph_id exists in disk_anomalies
 If subgraph hash matches stored hash
 Update time_to to current time, set
 processed = True
 Else if subgraph hash has changed
 Copy stored subgraph to revisions table
 Update the subgraph in disk_anomalies

 table, set processed = True
Select subgraph from disk_anomalies where
unprocessed = True
 For each returned subgraph:
 Copy stored subgraph to revisions table
 Delete stored subgraph from disk_anomalies

 The time series data analysis is implemented as an
Apache Spark job and operates according to the following
logic:

• Create a Spark dataframe anomaly_margins
with drive metric corresponding anomaly margins.
It will be evaluation how many standard deviations
away is the average value of a drive metric from the
average value of the corresponding mdisk (logical
disk) metric. If the value is greater than the value
specified within the anomaly margin dataframe, it
will be considered an anomaly.

• Create a Spark dataframe drive_mdisks from
Cassandra disk_anomalies table.

• Create drive metric Spark data stream
drive_metrics from Kafka topics that
correspond to the physical drive metrics of interest.
The data stream contains unprocessed drive metrics
as received from the IBM Storwize subsystem.

• Update the drive_metrics data stream by
joining it with drive_mdisks dataframe so that

it now contains a corresponding mdisk ID for each
drive.

• Create a new Spark data stream
drive_averages from the drive_metrics
stream by calculating an average value per drive
per metric within a 10 second tumbling window.
Save results to a new Kafka topic
da_drive_averages.

• Create a new Spark data stream
mdisk_averages from the drive_metrics
stream by calculating an average value and
standard deviation per logical disk, per metric
within a 10 second tumbling window. Save results
to a new Kafka topic da_mdisk_averages.

• Create two new Spark data streams based on the
Kafka topics da_mdisk_averages and
da_drive_averages and join them into a new
data stream joined_df based on the time
window, metric name and logical disk, so that for
each average metric value of a physical drive there
is a corresponding average value of the logical disk
and its standard deviation.

• Join the joined_df with anomaly_margins
so that for each metric there is a corresponding
anomaly margin available as a new column
stdev_margin.

• Add a new column stdev_diff to the
joined_df which measures how many logical
disk standard deviations away is the physical drive
average metric value from logical disk’s average
value.

• Filter rows from joined_df where
stdev_diff > stdev_margin.

• Group by drive and time window, count the number
of rows per disk and collect the names of the
anomaly metrics inside a new column. Output the
results to a new Kafka topic disk_anomalies.

During the experiment, the IT infrastructure monitoring
process is simulated and anomalies are induced. An extract
from a Kafka console consumer connected to the
disk_anomalies topic is given in Fig. 6. It can be seen
that an anomaly is detected for the physical drive ext-
virt3-storage_driveStats_26 and a total of 6
anomalies was observed for the given drive. The names of
the corresponding metrics are given in the
anomaly_metrics array, while window_start and
window_end indicate the start and end of the aggregation
window.

Jānis Kampars, et al. On Integration of Evolving Infrastructure Topology Graphs and Metric Data Streams in
Information Technology Infrastructure Management

67

Fig. 6. Detected physical drive anomalies.

IV. RELATED WORK
Two types of data can be considered when analysing IT

infrastructure for the purpose of detecting anomalies and
providing predictive maintenance – evolving infrastructure
graphs and time series data describing various IT
infrastructure components. Existing research papers
mostly concentrate on one of the aspects – either topology
or time series data analysis. One of the few exceptions is
the paper by Kampars et al. [3] concentrating on both data
sets. The time series data are referenced as measurable
properties, while aggregations are called context elements.
The proposed solution lacks the ability to retrieve the
topology graph from a data source and it is constructed
manually. The system is based on Apache Kafka, Apache
Spark and Apache Cassandra. Topology related
information is stored in Cassandra and no dedicated graph
database is being used.

A. Topology based infrastructure analysis
An example of topology driven anomaly detection can

be found in the work by Niwa et al. [4], who present a
framework for identifying anomalies in software services
of OpenStack cloud computing platform. The framework
is implemented in Python and Neo4J is used as the graph
database for storing the topology graph.

Topology based root cause analysis of an IT
infrastructure failure is also addressed by Schoenfisch et al.
[5], who propose a Markov Logic Networks and abductive
reasoning based solution. The proposed system was
implemented in RoCA, a tool providing a graphical user
interface for modelling the infrastructure and conducting
the root cause analysis.

Majumdar et al. [2] perform IT infrastructure analysis
for security purposes and propose a solution that is able to
identify topology inconsistencies that might occur between
multiple subsystems of a cloud computing platform. The
proposed system gathers data from cloud management
systems, cloud infrastructure system, and data centre
infrastructure components. The data collection is
performed in batch mode.

The security threats caused by cloud platform
misconfiguration or insider attacks are addressed by
Bleikertz et al. [6]. The authors establish a security system,
which proactively analyses the intended cloud
infrastructure configuration changes and risks associated
with them and then either approves or rejects them. The
graph is constantly updated whenever changes in
infrastructure configuration occur [7].

A construction of a cloud-based IT infrastructure
topology graph is addressed by Mensah et al. [8]. Logs

from Cloud Management System and Software Defined
Network controller are scanned to detect events that alter
the infrastructure topology graph. The proposed system is
validated by using OpenStack cloud computing platform.

B. Time series based infrastructure analysis
Harper et al. [1] propose a method for detecting failures

of individual infrastructure elements based on the received
operational status data and alerts. The work concentrates
on detecting cascading infrastructure errors are without any
knowledge of the infrastructure topology.

Mijumbi et al. [9] propose a system for analysing
communication system alarms. The system is built using
Apache Kafka, MongoDB, and python data science tools
such as sklearn, pandas, numpy.

Anomaly detection and root cause analysis is also
addressed by Lin et al. (2016). The paper proposes a
method for virtualized cloud data centres and addresses the
scalability challenges by using Apache Spark.

Another clustering-based anomaly detection solution is
proposed by Cucinotta et al. [9] The authors perform
analysis of system-level metrics, mostly related to resource
consumption patterns of virtual machines by using self-
organizing maps (SOM) based approach.

V. CONCLUSION
The paper presents a method for performing IT

infrastructure analysis based on both metric time series
data and evolving IT infrastructure topology graph. The
applicability of the proposed approach is proven by
implementing a prototype aimed at identifying physical
drive anomalies in IT infrastructure and it is based on
Apache Spark, Kafka, Cassandra, Neo4J and Python
programming language.

The method allows combing topology data and time
series data for comprehensive analysis of anomalies in the
complex IT infrastructure. The analysis is performed in
real-time and extra computational load on the
infrastructure is minimized. The method also uses efficient
versioning to track changes in the dynamic topology.

Identification of anomalies depends on predefined
rules. These rules are derived by means of data analysis and
expert knowledge. In further research, a set of rules will be
derived, and the method will be evaluated to determine its
computational efficiency and anomalies detection power.

VI. ACKNOWLEDGEMENT
This research is funded by European Regional

Development Fund Project Nr. 1.1.1.1/19/A/003
“Development of integrated monitoring and predictive
maintenance solution for dynamically evolving IT
infrastructure” Specific Objective 1.1.1 “Improve research
and innovation capacity and the ability of Latvian research
institutions to attract external funding, by investing in
human capital and infrastructure” 1.1.1.1. measure
“Support for applied research” (round No.3)

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 62-68

68

REFERENCES
[1] R. Harper and P. Tee, “A method for temporal event correlation,”

2019 IFIP/IEEE Symp. Integr. Netw. Serv. Manag. IM 2019, pp.
13–18, 2019.

[2] S. Majumdar et al., Cloud security auditing, vol. 76. 2019.
[3] J. Kampars and J. Grabis, “Near Real-Time Big-Data Processing

for Data Driven Applications,” Proc. - 2017 Int. Conf. Big Data
Innov. Appl. Innov. 2017, vol. 2018-Janua, pp. 35–42, 2018.

[4] T. Niwa, Y. Kasuya, and T. Kitahara, “Anomaly detection for
openstack services with process-related topological analysis,”
2017 13th Int. Conf. Netw. Serv. Manag. CNSM 2017, vol. 2018-
Janua, pp. 1–5, 2017.

[5] J. Schoenfisch, C. Meilicke, J. von Stülpnagel, J. Ortmann, and H.
Stuckenschmidt, “Root cause analysis in IT infrastructures using
ontologies and abduction in Markov Logic Networks,” Inf. Syst.,
vol. 74, pp. 103–116, 2018.

[6] S. Bleikertz, C. Vogel, T. Gross, and S. Mödersheim, “Proactive
security analysis of changes in virtualized infrastructures,” ACM
Int. Conf. Proceeding Ser., vol. 7-11-Decem, pp. 51–60, 2015.

[7] S. Bleikertz, C. Vogel, and T. Groß, “Cloud radar: Near real-time
detection of security failures in dynamic virtualized
infrastructures,” ACM Int. Conf. Proceeding Ser., vol. 2014-
Decem, no. December, pp. 26–35, 2014.

[8] P. Mensah, S. Dubus, W. Kanoun, C. Morin, G. Piolle, and E.
Totel, “Connectivity graph reconstruction for networking cloud
infrastructures,” 2017 IEEE 16th Int. Symp. Netw. Comput. Appl.
NCA 2017, vol. 2017-Janua, pp. 1–9, 2017.

[9] R. Mijumbi, A. Asthana, C. Bernal, and M. Castejon, “MAYOR:
machine learning and analytics for automated operations and
recovery,” Proc. - Int. Conf. Comput. Commun. Networks,
ICCCN, vol. 2019-July, 2019.

	I. Introduction
	II. Method overview
	III. Experiments
	IV. Related work
	A. Topology based infrastructure analysis
	B. Time series based infrastructure analysis

	V. Conclusion
	VI. Acknowledgement

