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Abstract - This research includes a Comsol Mutiphysics 
model describing the temperature distribution on aluminum 
during the laser conductivity welding process. The influence 
of  laser power and speed on the welding process is discussed 
and compared with experiments. Numerical simulations of 
laser welding process have been performed to determine the 
temperature fields of laser impact to samples of aluminum. 
Numerical calculations are made for fiber laser. The plots of 
the temperature dependence on the surface and in the depth 
of aluminum samples on the velocity are analyzed for several 
power densities for this laser. 
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I. INTRODUCTION 
The investigation of the temperature distribution in a 

material induced by laser radiation is very  important for 
the optimization of different industrial laser material 
processing like cutting, drilling, marking, or welding.  

Laser welding technology is popular in the automotive 
industry, where it is used in the production of a large 
number of parts due to its high welding speed, low energy 
input and the resulting low part distortion, ease of 
automation, and other benefits [1]. Meanwhile, aluminium 
is steadily growing in automotive use to lighten car 
components. It is considered “material of choice” to meet 
the challenge of reducing environmental footprints and 
improving fuel economy while still retaining the security 
of automobiles. Despite the good prospects, joining 

aluminium using this technique can be problematic at 
present in terms of weld quality. 

Laser welding of light and high reflective metals such 
as aluminium is a very difficult technological process in 
particular, it requires extreme precision and selection of the 
correct laser source and technological parameters to ensure 
a quality welding seam. That is why it is necessary to use 
physical modelling and simulations as a powerful tool for 
clarifying the fundamental aspects of the laser welding 
process and for preliminary assessment and engineering 
forecasts of the emerging effects and for correct choice of 
the optimal working range of the technological parameters 
in the process of laser welding [2 - 5], [6 – 10], [14]. 

There are two types of heating modes, conduction and 
keyholes mode. They are used to describe the resulting 
melting of the metal during laser welding process. The 
power density applied to the welding area is the main 
difference between these two modes. Conduction welding 
takes place when the intensity is sufficient to cause meting 
but not sufficient to cause boiling [11 - 13]. 

In this article, a theoretical model describing the 
process of laser conduction welding of aluminum has been 
developed. The numerical simulation methods used in this 
research provide a good evaluation of both the optimum 
technical parameters, such as output laser power and speed 
of beam, as well as the dynamics of the process and the 
thermal isotherms in the processing area. 
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II. RESEARCH METHODOLOGY 
In order to approximate the depth and width of a 

welding zone, a computer simulation of the laser welding 
process was conducted using the commercial finite element 
method (FEM) software package COMSOL Mutiphysics. 
The laser beam was simulated as a moving heat source 
whose profile was represented by vertical configuration of 
Hermite-Gaussian mode (TEM01). The simulation was 
performed for the purpose of moving the laser beam over 
the surface of the workpiece in a straight line. The heating 
due to laser is treated as a body heat source on the surface. 
The body heat load within the workpiece plate is given by 
the following expression: 
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Q0 is total input power, Rc – reflection coefficient, σx and 
σy are the standard deviation parameters which determine 
the beam width and astigmatism. 

A. Welding process thermal model 
The amount of energy that is absorbed from the target 

material is much lower than the amount of energy that 
transfers the laser beam as it is generated from the laser 
beam machine, due to reflection coefficient and energy 
losses that take place during the process. In order to 
examine welding process the schema of the heating 
process shown in Fig. 1. The target material is in liquid 
phase which means that the temperature is above the 
melting temperature but has not reached the evaporating 
temperature. The amount of the total power that is 
absorbed is calculated the same way as before using the 
reflectivity coefficient of the material at melting phase: 

 
( )meltRQ −= 1Q 0 ,    Tmelt ≤ T < Tevap           (2) 

 
where Q is the absorbed energy flux, Q0 is the incidence 
laser beam heat flux, Rmelt is the reflectivity of the target 
material at liquid phase, Tmelt is the material melting 
temperature, and Tevap is the material evaporating 
temperature.  
 

 
Fig. 1. Welding process thermal modelling 

B. Initial-boundary conditions and heat transfer 
model 

The top face of the 3D solid body used in the simulation 
was set to be the target face for the incidence laser beam 
pulses, and the geometry was set to be a rectangular block 
with dimensions WxDxH. The initial temperature of the 
solid body T0 was set to be equal to the ambient 
temperature (T0 = Tamb=20 0C) in terms of the initial and 
boundary conditions. The following version of the heat 
equation is used to model heat transfer in a solid body: 

Tkq
dt
TCp ∇−==∇+
∂ q   Q, ρ            (2) 

where 𝜌𝜌 is the density of the material, Cp - heat capacity, k 
– thermal conductivity, Q is the heat source.  
The focal spot of the laser radiation focuses on the surface 
of the body, so it is assumed that the heat source is on the 
surface.  
A moving heat flux with a 2D Gaussian (4) density 
distribution is used as the laser beam. The expression for 
2D Gaussian can easily be obtained as the product of 1D 
Gaussian (3) on the x and y axes 
 

𝑔𝑔𝜎𝜎(𝑥𝑥) = 1
√2𝜋𝜋𝜋𝜋

exp (− 𝑥𝑥2

2𝜎𝜎2
)             (3) 

 

𝐺𝐺𝜎𝜎(𝑥𝑥, 𝑦𝑦) = 𝑔𝑔𝜎𝜎(𝑥𝑥).𝑔𝑔𝜎𝜎(𝑦𝑦) = 1
�2𝜋𝜋𝜎𝜎2

exp (−𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
)    (4) 

TABLE 1.  CHEMICAL COMPOSITIONS OF ALUMINUM ALLOYS 

Element Percent 
Si 0.06 
Fe 0.16 
Cu 1.25 
Mn 0.08 
Mg 2.32 
Zn 5.47 
Cr 0.20 
Ti 0.01 
Ga 0.01 
V 0.01 
Al 90.41 

 
The discretization of the sample was performed by  

triangular finite elements with maximum element size 0.6, 
minimum element size 0.1, maximum element growth rate 
1.9 (Fig. 2).   

 

 
Fig. 2. Discretization of welded samples 
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The input data for numerical experiments is mentioned 
in Table 2. 

TABLE 2.  THERMAL AND PHYSICAL PROPERTIES OF THE ALUMIMUM 
7075 –T6. 

Properties Value 
Melting point Tm, 0C 600 
Boiling point Tv, 0C 2450 
Thermal conductivity coefficient k, W/(m.K) 150 
Density ρ, kg/m3 2800 
Specific heat capacity c, J/(kg.K) 826 
Thermal diffusivity coefficient a, m2/s 23.4×10-6 

 
The numerical simulations of our study were divided 

into two main series: 
The power is maintained at a constant value of 1500 watts, 
and the diameter of the focal spot on the surface is changed 
in the range from 0.75 to 1 mm and the welding speed in 
the range from 25 to 125 mm / s. In the second series of 
computer simulations, the power is fixed at 2500 watts, 
and the upper parameters of the laser radiation are changed 
at the same operating intervals. 

III.  RESULTS AND DISCUSSIUON 
The Comsol Multiphysics software was used to 

conduct a number of numerical experiments. The speed of 
welding and the power of the laser were changed. 

The Fig. 3 shows specific temperature distribution in 
the plane x and y, obtained from numerical calculations 
for the welding speed v = 25 mm/s and laser power 1500 
W.  

 
Fig. 3. Temperature field on the surface of aluminium for laser 

power P = 1.5 kW and speed v = 25 mm/s. 
 

Fig. 4 and Fig. 5 shows graphs of the dependence of the 
depth of the welding pool on the speed for two diameters 
of the working spot d1 = 0.75 mm and d2 = 1.00 mm, 
respectively. The analysis of the results allows to draw the 
following conclusions: 

• As the welding speed increases, the depth of the 
pool decreases non linearly for the four obtained 
graphic dependencies; 

• The average rate of depth reduction 
for diameter d1 = 0.75 mm is  
9.3 μm/(mm/s) for power P1 = 1.5 kW; 
15.5 μm/(mm/s) for power P2 = 2.5 kW; 
for diameter d2 = 1.00 mm is  
8.0 μm/(mm/s) for power P1 = 1.5 kW; 
11.1 μm/(mm/s) for power P2 = 2.5 kW; 

• The depth of the pool for diameter d1 = 0.75 mm 
is about 40% greater than the depth of the pool 
for diameter d2 = 1.00 mm. 

 
Fig. 4. Dependence of the depth h on the welding speed v for a diameter 
of the working spot d1 = 0.75 mm and powers: P1 = 1.5 kW (red colour), 

P2 = 2.5 kW (green colour). 

 

Fig. 5. Dependence of the depth h on the welding speed v for a diameter 
of the working spot d2 = 1.00 mm and powers: P1 = 1.5 kW (red colour), 

P2 = 2.5 kW (green colour). 

Fig. 6 presents graphs of the dependence of the depth h on 
the speed v for a power P2 = 2.5 kW and diameters of the 
working spot d1 = 0.75 mm and d2 = 1.00 mm. The 
following conclusions can be drawn from them: 

• As the welding speed increases, the depth of the 
bath decreases non linearly for both diameters. 
The curves for speed interval v Є [25; 62.5] mm/s 
are steeper than the curves for speed interval v Є 
[62.5; 125] mm/s; 
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• The depth of the pool varies from 0.67 mm to 
2.10 mm for diameter d1 = 0.75 mm and from 
0.39 mm to 1.50 mm for diameter d2 = 1.00 mm. 

 
 

Fig. 6. Dependence of the depth h on the welding speed v for a power 
P2 = 2.5 kW and diameters of the working spot: d1 = 0.75mm (green 

colour); d2 = 1.00 mm (red colour) 
 
Fig. 7 and Fig. 8 shows graphs of the dependence of the 
width of the welding pool on the speed for two diameters 
of the working spot d1 = 0.75 mm and d2 = 1.00 mm, 
respectively. It follows from these graphs: 

• As the welding speed increases, the depth of the 
pool decreases non linearly for all obtained 
graphic dependencies; 

• The curves for speed interval v Є [25; 62.5] mm/s 
are again steeper than the curves for speed 
interval v Є [62.5; 125] mm/s; 

• The average rate of width reduction 
for diameter d1 = 0.75 mm is  
17.6 μm/(mm/s) for power P1 = 1.5 kW; 
24.0 μm/(mm/s) for power P2 = 2.5 kW; 
for diameter d2 = 1.00 mm is  
20.5 μm/(mm/s) for power P1 = 1.5 kW; 
29.5 μm/(mm/s) for power P2 = 2.5 kW; 

• The width of the pool for diameter d2 = 1.00 mm 
is about 25-30% greater than the depth of the 
pool for diameter d1 = 0.75 mm; 

• The width of the pool for power P2 = 2.5 kW is 
about 40% greater than the depth of the pool for 
P1 = 1.5 kW for speed v = 25 mm/s and about 
25% greater than the depth of the pool for P1 = 
1.5 kW for speed v = 125 mm/s. 

 
Fig. 7. Dependence of the width w on the welding speed v for a 

diameter of the working spot d1 = 0.75 mm and laser power: P1 = 1.5 
kW (red colour) and P2 = 2.5 kW (green colour). 

 

 
Fig. 8. Graphs of the dependence of the width w on the welding speed v 
for a diameter of the working spot d2 = 1.00 mm and laser power: P1 = 

1.5 kW (red colour) and P2 = 2.5 kW (green colour). 
 

A good coherence of all experimental results with the 
results of numerical experiments is obtained. 

IV. CONCLUSION 
Our current study is an attempt to make little progress 

in the direction of optimization and implementation of 
model and simulation approaches in solving a specific 
technological process for laser welding of aluminium 
sheets. The study will help speed up the entry of laser 
technology and more accurate than that for welding in 
such industries as mechanical engineering, aerospace, 
automotive medicine, and others. 

Due to their unique characteristics, laser welding is 
increasingly being used in industry today, especially for 
the production of value-added components that are 
difficult to produce using traditional welding methods. 

Several synergistic factors will contribute to 
improving the quality and reliability of welds while 
reducing productivity and production costs. 
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These include continuous improvements in the use of 
appropriate software for modelling, simulations, and 
process optimization. The growing volume of research in 
this direction will ultimately contribute to the deeper 
penetration of laser technologies in the market of new 
innovative, highly productive, and energy-efficient 
technologies. Our model and numerical experiments with 
Comsol Multiphysics tools are a small step in the right 
direction. 
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