Characteristics of Movements when Cylindrical Turning, Drilling, Coredrilling and Reaming

Angel Poparov
Technical University - Sofia, Branch Plovdiv
Plovdiv, Bulgaria
poparan@abv.bg

Agop Izmirliqn
Technical University - Sofia, Branch Plovdiv
Plovdiv, Bulgaria
izmirliyanx3@gmail.com

Abstract

In the process of work the tool angles change their value to become the working angles. This results in a variation of the work conditions of the cutting tools. The variation depends on the characteristic of the resultant cutting motion - the sum of the cutting motion and feed motion. In this article the characteristics of motions of cylindrical turning, drilling, coredrilling and reaming are derived, which can serve as a basis for determining the relations between the tool and working angles. These relations can be used in programming the CNC to prevent the formation of negative working clearance angle and the destruction of the tool.

Keywords: characteristics of movement, coordinate axes, cutting and feed motion, resultant cutting motion.

I. Introduction

The ISO 3002-1982 standard helps to solve many engineering tasks, but it is not generally valid and computer oriented. The simultaneous existence of two standards ASME B94.50-1975 and ISO3002-1:1984, which deal with unchangeable terminology and definitions, has a large share in the confusion and misunderstanding of the basic geometric parameters of cutting tools [1].

A critical analysis of both the advantages and disadvantages of ISO 3002-1:1984 can be found in a number of sources [1] - [6].

In the alternative methodology of [7], proposed in [2], the dependencies between tool and working angles are derived by defining in a new way the setting angles G, H and L that give the correlation between the tool-in-hand system f and the machine system m, and the motion angles M, N and T that connect the tool-in-use system f_{e} with the machine system m.

The transformations of tool angles in working ones in the process of operation is due to the feed rate D_{f}. The feed rate D_{f}, summed with the cutting motion D_{c}, determines the resultant cutting motion D_{e}. The placement of the tool in relation to the workpiece also has an impact.

For transformations of the tool angles into working ones and vice versa it is necessary that the main characteristics of the cutting motion D_{c}, feed rate D_{f} and the resultant cutting motion D_{e} : trajectory, path, speed, acceleration are known. The local elements of the trajectory: the tangent, the principal normal, the binormal (which form an accompanying trihedron), curvature and torsion should be known as well.

For the practical application of these dependencies the parametric equations of resultant cutting motion in cylindrical turning, drilling, coredrilling and reaming have been derived in [8] and [9]. In this article the equations of the characteristics of the cutting, feed and resultant cutting motions are derived.

II. Methods

A. Equations for the resultant cutting motion and the motions of cut and feed.

Two rectangular right oriented coordinate systems, fixed to the workpiece $O_{1 X_{1} Y_{1} 1_{1}}$ and the machine $O_{0 X_{0} \gamma_{0} Z_{0}}$, respectively, were introduced. Axes X_{0}, Y_{0} and Z_{0} are colinear with the axes of a standard coordinate system as in [10].

The case of cutting motion $-C_{c}^{\prime}$ and feed motion $-Z_{f}$ is considered (Fig. 1 and Fig. 2).

Fig. 1 Cutting motion and feed motion $-Z_{f}$ when cylindrical turning.
The resultant cutting motion for a point of the cutting edge of a tool with coordinates $x=$ const., $y=$ const. and $z=-z(t)$ is defined in $O_{0 X_{0} \gamma_{0} z_{0}}$ with the equation of a helix curve

$$
\bar{r}_{e}(t)=\left|\begin{array}{l}
x_{e}(t) \tag{1}\\
y_{e}(t) \\
z_{e}(t)
\end{array}\right|=\left|\begin{array}{c}
r \cdot \cos \left[N-\varphi_{01}(t)\right] \\
r \cdot \sin \left[N-\varphi_{01}(t)\right] \\
Z-z(t)
\end{array}\right|,
$$

where φ_{01} is the angle of rotation around $Z_{0} \equiv Z_{1}$ of the workpiece coordinate system $O_{1 X_{1} Y_{1} Z_{1}}$ against coordinate system of the machine $O_{0 x_{0} \gamma_{0} Z_{0}}$, and

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}}=\text { const } . \tag{2}
\end{equation*}
$$

The tool-in-use system f_{e} [8] is orientated in the machine system m (Fig.3) according to the cutting direction giving angel N

$$
\begin{equation*}
N=\operatorname{arctg}\left(-\frac{y}{x}\right)=\text { const } . \tag{3}
\end{equation*}
$$

The motion of cut $-C_{c}^{\prime}$ in $O_{0 X_{0} \gamma_{0} Z_{0}}$ is defined by the equation:

$$
\bar{r}_{c}(t)=\left|\begin{array}{c}
x_{c}(t) \tag{4}\\
y_{c}(t) \\
z_{c}
\end{array}\right|=\left|\begin{array}{c}
r \cdot \cos \left[N-\varphi_{01}(t)\right] \\
r \cdot \sin \left[N-\varphi_{01}(t)\right] \\
z
\end{array}\right| .
$$

The feed motion $-Z_{f}$ in $O_{0 X_{0} \gamma_{0} Z_{0}}$ is described by:

$$
\bar{r}_{f}(t)=\left|\begin{array}{c}
x_{f} \tag{5}\\
y_{f} \\
z_{f}(t)
\end{array}\right|=\left|\begin{array}{c}
r \cdot \cos N \\
r \cdot \sin N \\
Z-z(t)
\end{array}\right| .
$$

When both the revolutions $n, \min ^{-1}$, and the feed f, $\mathrm{mm} / \mathrm{min}$, are constant, the values of the angular speed ω and the feed speed v_{f} are

$$
\begin{gather*}
\omega=2 . \pi . n \tag{6}\\
v_{f}=f . n . \tag{7}
\end{gather*}
$$

In this case the angle of rotation is

$$
\begin{equation*}
\varphi_{0 I}=\omega . t=2 . \pi . n . t, \tag{8}
\end{equation*}
$$

and the translation along the direction of feed is

$$
\begin{equation*}
z(t)=V_{f .} t=f . n . t . \tag{9}
\end{equation*}
$$

Then the equations (1), (4) and (5) get the form

$$
\begin{align*}
& \bar{r}_{e}(t)=\left|\begin{array}{c}
x_{e}(t) \\
y_{e}(t) \\
z_{e}(t)
\end{array}\right|=\left|\begin{array}{c}
r \cdot \cos [N-2 . \pi \cdot n \cdot t] \\
r \cdot \sin [N-2 . \pi \cdot n \cdot t] \\
Z-f \cdot n \cdot t
\end{array}\right|, \tag{10}\\
& \bar{r}_{c}(t)=\left|\begin{array}{c}
x_{c}(t) \\
y_{c}(t) \\
z_{c}
\end{array}\right|=\left|\begin{array}{c}
r \cdot \cos [N-2 . \pi \cdot n \cdot t] \\
r \cdot \sin [N-2 . \pi \cdot n \cdot t] \\
z
\end{array}\right|, \tag{11}
\end{align*}
$$

Fig. 2 Cutting motion $-C_{c}^{\prime}$ and feed motion $-Z_{f}$ when drilling.

$$
\bar{r}_{f}(t)=\left|\begin{array}{c}
x_{f} \tag{12}\\
y_{f} \\
z_{f}(t)
\end{array}\right|=\left|\begin{array}{l}
r \cdot \cos N \\
r . \sin N \\
Z-f . n \cdot t
\end{array}\right| .
$$

B. Characteristics of cut motion.

The cutting speed \bar{v}_{c} is:

$$
\bar{v}_{c}(t)=\left|\begin{array}{c}
v_{c_{1}}(t) \tag{13}\\
v_{c_{1} 1_{1}}(t) \\
v_{c_{1}}
\end{array}\right|=\left|\begin{array}{c}
2 \cdot \pi \cdot n \cdot n \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \\
-2 \cdot \pi \cdot n \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
0
\end{array}\right|,
$$

and the value v_{c} is:

$$
\begin{equation*}
v_{c}=\sqrt{v_{c x_{1}}^{2}+v_{c v_{1}}^{2}+v_{c c_{1}}^{2}}=2 \cdot \pi \cdot r \cdot n=\text { const. } \tag{14}
\end{equation*}
$$

The unit vector $\bar{e}_{v_{c}}$ of the cutting speed \bar{v}_{c} is:

$$
\bar{e}_{v_{c}}(t)=\frac{\bar{v}_{c}(t)}{v_{c}}=\left|\begin{array}{c}
\sin (N-2 . \pi \cdot n \cdot t) \tag{15}\\
-\cos (N-2 . \pi . n \cdot t) \\
0
\end{array}\right| .
$$

The acceleration of cutting \bar{a}_{c} is:

$$
\bar{a}_{c}(t)=\left|\begin{array}{l}
a_{c c_{1}}(t) \tag{16}\\
a_{c_{1}}(t) \\
a_{c_{1}}(t)
\end{array}\right|=\left|\begin{array}{c}
-4 \cdot \pi^{2} \cdot n^{2} \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
-4 \cdot \pi^{2} \cdot n^{2} \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \\
0
\end{array}\right|,
$$

and the value a_{c} is:

$$
\begin{equation*}
a_{c}=\sqrt{a_{c x_{1}}^{2}+a_{c y_{1}}^{2}+a_{c c_{1}}^{2}}=4 \cdot \pi^{2} \cdot n^{2} \cdot r=\text { const } . \tag{17}
\end{equation*}
$$

Fig. 3. Tool-in-use system $f_{e}\left(\bar{\tau}_{f e}, \bar{n}_{f e}, \bar{b}_{f e}\right)$ and angle N when cylindrical turning with cutting motion $-C_{c}^{\prime}$ and feed motion $-Z_{f}$.

The unit vector $\bar{e}_{a_{c}}$ of the acceleration of cut \bar{a}_{c} is:

$$
\bar{e}_{a_{c}}(t)=\frac{\bar{a}_{c}(t)}{a_{c}}=\left|\begin{array}{c}
-\cos (N-2 . \pi \cdot n \cdot t) \tag{18}\\
-\sin (N-2 . \pi \cdot n \cdot t) \\
0
\end{array}\right| .
$$

The value of the tangent acceleration $\bar{a}_{c t}$ is:

$$
\begin{equation*}
a_{c \tau}=0 \tag{19}
\end{equation*}
$$

and the value $a_{c n}$ of the normal acceleration $\bar{a}_{c n}$ is:

$$
\begin{equation*}
a_{c n}=\sqrt{a_{c}^{2}-a_{c r}^{2}}=a_{c}=4 \cdot \pi^{2} \cdot n^{2} \cdot r=\text { const } . \tag{20}
\end{equation*}
$$

The radius $R_{k_{1 c}}$ of the curve $k_{1 c}$ is:

$$
\begin{equation*}
R_{k_{1 c}}=\frac{1}{k_{1 c}}=r . \tag{21}
\end{equation*}
$$

The unit vectors of tangent $\bar{\tau}_{c}$, the principal normal \bar{n}_{c} and binormal \bar{b}_{c} of the trajectory of cutting motion are:

$$
\begin{align*}
& \bar{\tau}_{c}(t)=\bar{e}_{v_{c}}(t)=\left|\begin{array}{c}
\sin (N-2 . \pi . n . t) \\
-\cos (N-2 . \pi . n . t) \\
0
\end{array}\right|, \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \bar{b}_{c}=\frac{\bar{v}_{c} \times \bar{a}_{c}}{\left|\bar{v}_{c} \times \bar{a}_{c}\right|}= \tag{24}
\end{align*}
$$

$$
\begin{aligned}
& =\left|\begin{array}{c}
\frac{v_{c y} \cdot a_{c z}-a_{c y} \cdot v_{c z}}{\sqrt{\left(v_{c x} \cdot a_{c y}-a_{c x} \cdot v_{c y}\right)^{2}+\left(v_{c y} \cdot a_{c z}-a_{c y} \cdot v_{c z}\right)^{2}+\left(v_{c z} \cdot a_{c x}-a_{c z} \cdot v_{c x}\right)^{2}}} \\
\frac{v_{c z} \cdot a_{c x}-a_{c z} \cdot v_{c x}}{\sqrt{\left(v_{c x} \cdot a_{c y}-a_{c x} \cdot v_{c y}\right)^{2}+\left(v_{c y} \cdot a_{c z}-a_{c y} \cdot v_{c z}\right)^{2}+\left(v_{c z} \cdot a_{c x}-a_{c z} \cdot v_{c x}\right)^{2}}} \\
\frac{v_{c x} \cdot a_{c y}-a_{c x} \cdot v_{c y}}{\sqrt{\left(v_{c x} \cdot a_{c y}-a_{c x} \cdot v_{c y}\right)^{2}+\left(v_{c y} \cdot a_{c z}-a_{c y} \cdot v_{c z}\right)^{2}+\left(v_{c z} \cdot a_{c x}-a_{c z} \cdot v_{c x}\right)^{2}}}
\end{array}\right| .
\end{aligned}
$$

C. Characteristics of feed motion.

The feed speed \bar{v}_{f} is:

$$
\begin{equation*}
\bar{v}_{f}(t)=[0,0,-n \cdot f]^{T}, \tag{25}
\end{equation*}
$$

and its value v_{f} is

$$
\begin{equation*}
v_{f}=\text { f. } n=\text { const } . \tag{26}
\end{equation*}
$$

The unit vector $\bar{e}_{v_{f}}$ of the feed speed \bar{v}_{f} is:

$$
\begin{equation*}
\bar{e}_{v_{f}}=[0,0,-1]^{T} \tag{27}
\end{equation*}
$$

D. Characteristics of resultant cutting motion. The speed \bar{v}_{e} is:

$$
\bar{v}_{e}(t)=\left|\begin{array}{c}
v_{e x}(t) \tag{28}\\
v_{e y}(t) \\
v_{e z}(t)
\end{array}\right|=\left|\begin{array}{c}
2 \cdot \pi \cdot n \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \\
-2 \cdot \pi \cdot n \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
-n \cdot f
\end{array}\right|,
$$

and its value v_{e} is:

$$
\begin{equation*}
v_{e}=\sqrt{v_{e x}^{2}+v_{e y}^{2}+v_{e z}^{2}}=n \cdot \sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}=\text { const. } \tag{29}
\end{equation*}
$$

The unit vector $\bar{e}_{v e}$ for the speed \bar{v}_{e} is:

$$
\bar{e}_{v_{e}}(t)=\frac{\bar{\nu}_{e}(t)}{v_{e}}=\left|\begin{array}{c}
\frac{2 \cdot \pi \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \tag{30}\\
-\frac{2 \cdot \pi \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \\
-\frac{f}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}}
\end{array}\right| .
$$

The acceleration \bar{a}_{e} is:

$$
\bar{a}_{e}(t)=\left|\begin{array}{l}
a_{e x}(t) \tag{31}\\
a_{e y}(t) \\
a_{e z}(t)
\end{array}\right|=\left|\begin{array}{c}
-4 \cdot \pi^{2} \cdot n^{2} \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
-4 \cdot \pi^{2} \cdot n^{2} \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \\
0
\end{array}\right|,
$$

and its value a_{e} is:

$$
\begin{equation*}
a_{e}=\sqrt{a_{e x}^{2}+a_{e y}^{2}+a_{e z}^{2}}=4 \cdot \pi^{2} \cdot n^{2} \cdot r=\text { const } . \tag{32}
\end{equation*}
$$

The unit vector $\bar{e}_{a_{e}}$ of acceleration \bar{a}_{e} is:

$$
\bar{e}_{a_{e}}(t)=\frac{\bar{a}_{e}(t)}{a_{e}}=\left|\begin{array}{c}
-\cos (N-2 . \pi \cdot n \cdot t) \tag{33}\\
-\sin (N-2 . \pi \cdot n \cdot t) \\
0
\end{array}\right| .
$$

The value $a_{e \tau}$ of the tangential acceleration $\bar{a}_{e \tau}$ is:

$$
\begin{equation*}
a_{e \tau}=0 \tag{34}
\end{equation*}
$$

and the value $a_{e n}$ of the normal acceleration $\bar{a}_{e n}$ is:

$$
\begin{equation*}
a_{e n}=\sqrt{a_{e}^{2}-a_{e r}^{2}}=a_{e}=4 \cdot \pi^{2} \cdot n^{2} \cdot r=\text { const } . \tag{35}
\end{equation*}
$$

Radius $R_{k_{1 e}}$ of the curve $k_{1 e}$ of the trajectory of resultant cutting motion is:

$$
\begin{equation*}
R_{k_{1 e}}=\frac{1}{k_{1 e}}=\frac{v_{e}^{2}}{a_{e n}}=\frac{f^{2}+4 \cdot \pi^{2} \cdot r^{2}}{4 \cdot \pi^{2} \cdot r} . \tag{36}
\end{equation*}
$$

The derivative $\dot{\bar{a}}_{e}$ for acceleration is:

$$
\dot{\bar{a}}_{e}(t)=\left|\begin{array}{c}
-8 \cdot \pi^{3} \cdot n^{3} \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \tag{37}\\
8 \cdot \pi^{3} \cdot n^{3} \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
0
\end{array}\right|
$$

The torsion $k_{2 e}$ of the trajectory of resultant cutting motion is

$$
k_{2 e}=\frac{\left|\begin{array}{ccc}
v_{e x} & v_{e y} & v_{e z} \tag{38}\\
a_{e x} & a_{e y} & a_{e z} \\
\dot{a}_{e x} & \dot{a}_{e y} & \dot{a}_{e z}
\end{array}\right|}{v_{e}^{4} \cdot a_{e n}}=\frac{8 \cdot \pi^{3} \cdot r \cdot f}{\left(4 \cdot \pi^{2} \cdot r^{2}+f^{2}\right)^{2}} .
$$

The unit vectors of tangent $\bar{\tau}_{f e}$, the principal normal $\bar{n}_{f e}$ and binormal $\bar{b}_{f e}$ of the trajectory of resultant cutting motion (Fig. 3) are:

$$
\begin{aligned}
& \bar{\tau}_{f e}(t)=\bar{e}_{v_{e}}(t)=\left|\begin{array}{c}
\frac{2 \cdot \pi \cdot r \cdot \sin (N-2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \\
-\frac{2 \cdot \pi \cdot r \cdot \cos (N-2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \\
-\frac{f}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}}
\end{array}\right|, \\
& \begin{array}{l}
\left.\bar{n}_{f e}(t)=\left\lvert\, \begin{array}{c}
a_{e x}\left(v_{e y}^{2}+v_{e z}^{2}\right)-v_{e x}\left(v_{e y} \cdot a_{e y}+v_{e z} \cdot a_{e z}\right) \\
a_{e y}\left(v_{e x}^{2}+v_{e z}^{2}\right)-v_{e y}\left(v_{e x} \cdot a_{e x}+v_{e z} \cdot a_{e z}\right. \\
a_{e z}\left(v_{e x}^{2}+v_{e y}^{2}\right)-v_{e z}\left(v_{e x} \cdot a_{e x}+v_{e y} \cdot a_{e y}\right.
\end{array}\right.\right)= \\
=\left|\begin{array}{c}
-4 \cdot \pi^{2} \cdot n^{4} \cdot r \cdot\left(4 \cdot \pi^{2} \cdot r^{2}+f^{2}\right) \cdot \cos (N-2 \cdot \pi \cdot n \cdot t) \\
-4 \cdot \pi^{2} \cdot n^{4} \cdot r \cdot\left(4 \cdot \pi^{2} \cdot r^{2}+f^{2}\right) \cdot \sin (N-2 \cdot \pi \cdot n \cdot t) \\
0
\end{array}\right|,
\end{array} \\
& \bar{b}_{f e}=\frac{\bar{v}_{e} \times \bar{a}_{e}}{\left|\bar{v}_{e} \times \bar{a}_{e}\right|}= \\
& =\left|\begin{array}{c}
\frac{v_{e y} \cdot a_{e x}-a_{e y} \cdot v_{e x}}{\sqrt{\left(v_{e x} \cdot a_{e y}-a_{e x} \cdot v_{e y}\right)^{2}+\left(v_{e y} \cdot e_{e z}-a_{e y} \cdot v_{e z}\right)^{2}+\left(v_{e x} \cdot a_{e x}-a_{e x} \cdot v_{e x}\right)^{2}}} \\
\frac{v_{e x} \cdot a_{e x}-a_{e x} \cdot v_{e x}}{\sqrt{\left(v_{e x} \cdot a_{e y}-a_{e x} \cdot v_{e y}\right)^{2}+\left(v_{e y} \cdot a_{e z}-a_{e y} \cdot v_{e x}\right)^{2}+\left(v_{e x} \cdot a_{e x}-a_{e x} \cdot v_{e x}\right)^{2}}} \\
\frac{v_{e x} \cdot a_{e y}-a_{e x} \cdot v_{e y}}{\sqrt{\left(v_{e x} \cdot a_{e y}-a_{e x} \cdot v_{e y}\right)^{2}+\left(v_{e y} \cdot a_{e z}-a_{e y} \cdot v_{e z}\right)^{2}+\left(v_{e x} \cdot a_{e x}-a_{e x} \cdot v_{e x}\right)^{2}}} \\
\end{array}\right| \text {. } \\
& =\left|\begin{array}{l}
-\frac{f \cdot \sin (N+2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \\
\frac{f \cdot \cos (N+2 \cdot \pi \cdot n \cdot t)}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}} \\
-\frac{2 \cdot \pi \cdot r}{\sqrt{4 \cdot \pi^{2} \cdot r^{2}+f^{2}}}
\end{array}\right|
\end{aligned}
$$

III. Conclusions

The change of tool angles in some working cases (turning acme threads, face turning, milling of complex
profile surfaces, high speed cutting) leads to significant changes in the values of clearance angles, sometimes leading to tool destruction. The coordinate systems, setting angles and motion angles, defined in ISO 3002/2-1982(E), lead to complicated, unclear and in some cases impossible transformations of tool angles to working angles.

The derived equations for the characteristics of the cutting, feed and resultant cutting motions are the basis for deriving the dependencies for straight and inverse transformation between tool and working angles in cylindrical turning, drilling, coredrilling and reaming.

Acknowledgments: The authors would like to thank the Research and Development Sector at the Technical University of Sofia for the financial support.

REFERENCES

[1] V. Astakhov, Geometry of Single-Point Turning Tools and Drills: Fundamentals and Practical Applications. Springer, 2010, pp . 565
[2] A. Vachev, Conversion Methodology to Relate Tool and Working Angles - an Alternative to ISO 3002/2, Journal of the Technical University at Plovdiv, "Fundamental Sciences and Applications", Vol. 13 (6), 2006. Anniversary Scientific Conference' 2006, Plovdiv, Bulgaria, (In Bulgarian), pp. 51-58.
[3] S. Radzevich, Geometry of the Active Part of Cutting Tools (in the Tool-in-Hand System), SME Paper TPO 6PUB37:10, 2006.
[4] S. Radzevich, Geometry of the Active Part of Cutting Tools (in the Tool-in-Use System), SME, 2006.
[5] M. Aleksiev, Machining by rotary cutting on CNC Machine, M.S. thesis, Technical University of Sofia, Sofia, Bulgaria, 2018
[6] M. Aleksiev, Grapho-analytical method for determining the working angles of turning tools, Journal of the Technical University at Plovdiv, Vol. `21 (2), 2015, Scientific Conference Techsys-2015, Plovdiv, Bulgaria, (In Bulgarian), pp. 61.
[7] ISO 3002/2-1984(E), Basic quantities in cutting and grinding - Part 2: Geometry of the active part of cutting tools - General conversion formulae to relate tool and working angles.
[8] A. Vachev and A. Poparov, Tool in use system and motion angles when turning, Journal of the Technical University at Plovdiv, "Fundamental Sciences and Applications", Vol. 13 (6), 2006. Anniversary Scientific Conference' 2006, Plovdiv, Bulgaria, (In Bulgarian), pp. 59-70.
[9] A. Vachev and A. Poparov, Tool in hand and tool in use systems when boring (3D), drilling, counterboring and reaming, Journal of the Technical University at Plovdiv, "Fundamental Sciences and Applications", Vol. 13 (6), 2006. Anniversary Scientific Conference' 2006, Plovdiv, Bulgaria, (In Bulgarian), pp. 85-92.
[10] ISO841-1974(E), Numerical control of machines - Axis and motion nomenclature.

