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Abstract. This work is a logical continuation of the authors’ 
cycle of works devoted to construction of a mathematical 
model of the unloading process of cuttings from a slotted 
hopper. The purpose of the paper is a theoretical 
justification of the movement of an array of cuttings during 
gravity unloading.  The article proposes consideration of the 
process of unloading the energy willow cuttings from the 
point of view of hydrodynamic multiphase systems.  It is 
suggested to consider the set of cuttings as a pseudo-fluid 
consisting of two phases: discrete (cuttings) and continuous 
(air). Each of these phases can be considered as a 
continuous environment. Under such conditions, the task is 
reduced to consideration of the cuttings' discharge as the 
movement of a viscous non-contacting pseudo-liquid.  
Under such assumptions, the velocity field of the set of 
cuttings can be characterized by the Navier-Stokes 
equation, the solution of which will allow forming of an 
algorithm for building a mathematical model of the motion 
of such pseudo-fluid and moving to the calculation 
equations of the motion with initial and boundary 
conditions. 

Keywords: unloading of cuttings, energy willow, mathematical 
model, Navier–Stokes equation, Laplace transform, 
calculation equations. 

I. INTRODUCTION 
Recently, in the field of energy, more and more 

attention is paid to renewable energy sources.  One of the 

most promising trends from the point of view of 
increasing volumes is biomass energy. Particularly, there 
is a trend towards increasing popularity of fuels from 
bioenergy crops, for which fast and productive fuels are 
needed. The most widespread in Ukraine, energy willow 
is propagated vegetatively by cuttings 20-25 cm long and 
5-20 mm in diameter [1-3]. Today, the planting of such 
material is carried out by planters, in which the planting 
material is fed exclusively by hand, which significantly 
limits the possibilities of increasing the efficiency of the 
units.  The theoretical study of the movement of cuttings 
during gravity unloading and the implementation of the 
obtained results in practice can help to create a planting 
machine [4-6].  

In accordance with the scientific direction that is being 
developed at the Higher Educational Institution “Podillia 
State University”, "Justification of the work process and 
parameters of the cuttings supply mechanism of the 
machine for planting energy willow" (state registration 
number 0119U100945), an automated system of supply 
and selection of planting material of woody energy crops 
is being developed. 

Analysis of recent research and publications. 
Many works have dealt with the issues of improving 

the unloading process of materials, but, despite the 
significant successes in this field, the dynamic processes 
of unloading loose homogeneous materials have not been 
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studied enough. Thus, currently the main characteristics 
are considerably investigated and physical and mechanical 
properties of bulk materials, which to one degree or 
another affect the process of crypt formation, are 
considered. General directions of research in the field of 
uninterrupted functioning of hopper devices and the 
improvement of crypt breaking equipment for bulk 
cargoes with a wide range of physical and mechanical 
properties are reflected [7-17]. 

Numerous studies of the crypt formation process made 
it possible to establish only some dependencies that 
explain the essence of this process.  The degree of 
influence of a huge number of different interrelated 
factors on crypt formation is difficult to assess practically 
and predict theoretically: it is a geometry of the hopper 
and outlet opening, and the physical and mechanical 
properties of materials, and the conditions of loading, 
storage, and release.  Precisely, due to the difficulties in 
ensuring uniform continuous movement, which excludes 
the process of crypt formation, until now there is no 
universal feeding device that would work effectively with 
any loose material, and the variety of material that 
requires unloaded contributes to further searches for 
justifications movement of one or another material. 

It is also difficult to overestimate the scientific and 
practical importance of studies of the mechanism of 
movement of loose materials under the influence of their 
own weight, since the physical and mechanical properties 
of these materials and the patterns of their termination 
have a decisive influence on the design of hoppers, as well 
as discharge devices and devices that stimulate discharge. 

It should be emphasized that today there is no single 
theory of discharge of loose materials and crypt formation 
processes in the hopper. 

 The problem is even more complicated when it is 
necessary to ensure a uniform and continuous discharge of 
material in which one dimension (length) significantly 
exceeds the other two dimensions.  Plant cuttings are an 
example of such material. 

When creating an automatic planter for such material, 
the task of fast and accurate feeding of cuttings occurred, 
which led us to search for ways to justify the movement of 
cuttings during unloading from the storage tank [18-20]. 

Therefore, the study of this issue will continue to be 
relevant. The authors of this work made a significant 
contribution to the development of this issue in their 
previous works. One of the first steps in this direction was 
the construction of a mathematical model of the process of 
gravitational discharge of rod-like materials from slotted 
hoppers [21-23]. 

The authors also worked out general principles for 
building a mathematical model of the process of 
unloading cuttings from a hopper, defined boundary 
conditions and characteristics of their movement [23, 25]. 

The main assumptions about the nature of the 
movement of the stem-air mixture, which was presented 
in the form of a two-phase pseudo-liquid, were considered 
and substantiated.  Thanks to this, some components of 
the equations could be neglected, and the existing 
equations of motion could be significantly simplified. 

In previous studies, based on the assumptions made 
about the nature of the movement of a two-phase fluid, 
simplified equations were obtained [21,22]: 
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Equations (1) - (3) became the basis for describing the 
process of unloaded cuttings from the hopper.  It is 
necessary to add initial and boundary conditions to these 
equations, which in the new notation have taken the form: 
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Boundary conditions: 
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where h -  the thickness of the layer of cuttings 
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By applying the Laplace transform to determine the 
Fourier coefficients, a system of linear algebraic equations 
for the speed of movement of a pseudo-fluid was obtained 
(see (11), (12)) [21, 23] 
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where nnnn BBAA 2121 ,,, - the quantities that are 
unknown functions of the variable x2. 
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Formulas (11), (12) provide a general solution to the 
system of equations of fluid motion.  To find values 

nn BB 21 ,  it is necessary to use the boundary conditions (5) 
- (10). 

This work is the final part of a cycle of works devoted 
to the construction of a mathematical model of the process 
of unloading cuttings from a slotted hopper, therefore its 
purpose is to derive calculation formulas for the 
movement of an array of cuttings during their 
gravitational unloading from a slotted hopper. 

II. MATERIAL AND METHODS 
The theoretical basis of the research was the work of 

domestic and foreign scientists, in which scientific 
methods were developed to justify the process of 
unloading bulk material from containers, with the 
development of issues of solving the problems of crypt 
formation and continuous unloading of material.  Based 
on the analysis of existing solutions for the movement of 
material during gravity dumping, a model of the 
movement of cylindrical bodies (cuttings) during free 
unloading from the hopper was created. 

For preliminary studies, the hopper model (Fig. 1) was 
used as a basis, in which consideration of the process is 
limited to a two-dimensional model (in the x1x2 plane), 
since it is believed that the movement of cuttings in the 
hopper does not depend on the x3 coordinate, due to the 
presence of walls parallel to the x1x2 plane, which limit 
the movement of cuttings along the x3 axis. 

 

Fig. 
1. Calculation diagram of a hopper with cuttings: S1 and S2 surfaces 
describ-ing the boundaries of the hopper walls; S3 – free surface of the 
hopper boundaries; α and β - angles to the horizontal plane of the two 
half-planes describing the bunker model; h - thickness of the layer of 
cuttings; b –width of the unloading window; A, ω - amplitude and 
circular speed of harmonic oscillations parallel to the axis x2; e1, e2, e3 – 
unit vectors of the Cartesian coordinate system. 

At the same time, based on the analysis of existing 
solutions, a number of assumptions were made, which 
allowed to consider the gravitationally unloaded cuttings 
from the point of view of hydrodynamic multiphase 
systems. 

According to this approach, the set of cuttings is 
considered as a fluid consisting of two phases: a discrete 
phase formed by the cuttings and a continuous phase - a 
gaseous medium (air). Each of these phases is considered 
as a continuous environment, which allowed us to 
consider the discharge as the movement of a viscous 
incompressible fluid. The velocity field of such a pseudo-
fluid must satisfy the Navier-Stokes equation. 

III. RESULTS AND DISCUSSION 
As noted in the authors’ previous studies the system 

of linear algebraic equations was obtained for 
determination of the Fourier coefficients of the Laplace 
transformation of the speed of movement of the pseudo-
fluid (see (11), (12)) [26,27]. 

In the future, we will limit ourselves to the case of a 
symmetrical hopper in order to obtain calculation 
formulas for the velocity of fluid movement. Within the 
framework of the adopted model of the hopper, this 
means that for the angles α and β the equality α= β is 
fulfilled. This restriction, on one hand, does not deny the 
commonality of the previously presented results, and on 
the other hand, it allows obtaining a solution to problem 
(1) - (3), (4) - (10) in closed analytical form. 

So, let α=β, then the system of linear algebraic 
equations takes the form: 
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Let's get the solution of this system of equations.  It 
follows from (15) and (16). 
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Substituting (22) and (23) into (14), finally have: 
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Formulas (22), (24), (25) provide a solution to the 
system of equations (14) - (16). 
 Next, using (22), (24) and (25), we obtain the following 
formulas for the Laplace transform U1 and U2 of the 
speed of movement of a pseudo fluid: 
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These formulas can be simplified, taking into account the 
fact that the value ,12
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Substitute (30)–(32) into (29) and (26), (27) and, after 
performing the necessary transformations, we have: 
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Formulas (33), (34) give an approximate value of the 
functions U1 and U2. 

 In order to use (33), (34) to solve the original 
problem, it is sufficient to apply the inverse 
transformation to the Laplace transform [26] 
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The next step is to calculate the integrals (35). For 

this purpose, we examine the functions U1 and U2 as a 
function - a parameter of the Laplace transform. As 
follows from (33) and (34), this function depends on q . 
Therefore, bearing in mind that q can take a complex 
value, one of the branches of the analytical function q  
should be singled out. To do this, in the complex plane of 
the variable q, we will make a cut along the negative real 
semiaxis ( 0Re <q , 0lim <q ). In such a complex plane, 
we select a branch q  for which 0Re ≥q  and 

ππ ≤<− qarg . It is easy to see that the functions U1 and 
U2 are analytic functions of the complex variable q 
excluding the above cut and the points 0=q , π2iq ±= .  
Moreover, the points π2iq ±=  are special points of the 
pole type, and the point 0=q  is a branching point of the 
algebraic type.  In addition, the functions U1 and U2 tend 
to zero.  Such properties of the functions U1 and U2 
guarantee the applicability of the remainder theorem [26] 
and allow the calculation of the integral (35) to be 
replaced by the calculation of the remainders at points 

π2iq ±=  and integrals of these functions over a circle 
with an infinitesimally small radius and centered at the 
branching point 0=q . Residuals can be calculated using 
the formula [25, 26]. 

( ) ( ) ( )qUiqiresU
iq 2,122,1 2lim2 ππ

π
±=±

±→
 (36) 

Thus, based on the above, we get 

( ) ( )( ) ( )( ) ∫→
−−+= −

ε

π
ω

ωω

ε
ππ

C

qt
titi dqeUeiUreseiUrestxxu 2

111211 0
lim

22,,
 (37) 

( ) ( )( ) ( )( ) ∫→
−−+= −

ε

π
ω

ωω

ε
ππ

C

qt
titi dqeUeiUreseiUrestxxu 2

222212 0
lim

22,,
 (38) 



Environment. Technology. Resources. Rezekne, Latvia 
Proceedings of the 15th International Scientific and Practical Conference. Volume III, 335-341 

339 

Here - denotes an excess, - a circle of radius ε 
centered at a point q = 0. 

Using formula (36), we get 
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In formulas (39), (40), dimensionless variables 
21 ,, xxt  are replaced by dimensional 21 ,, xxt  

variables.  The value αctg0hbM += , b is the width of 
the unloaded window, 

 
h0 - the distance from the free border of the layer of 

cuttings to the plane of the unloaded window at the 
moment of time t=0. 
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Let's calculate the integrals in (37), (38).  For this, we 
will assume that the distance from the border of the free 
surface of the cuttings to the plane of the unloading 
window changes over time according to a linear law 
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Then the Laplace transform of this function 
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Substitute (42) into (36) and (33) into (34).  Having 
made the necessary transformations, we have 
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  πacC 2= . 
Finally, we have the following calculation formulas for 
the components of the speed of movement of the discrete 
phase (set of cuttings) of the fluid 

12111 uuu −=  (45) 

22212 uuu −=  (46) 

where values u11, u12, u21, u22 are determined by 
formulas (39), (40) and (43), (44). 

As follows from (43), (44), the values u12 and u22 do 
not depend on the temporal variable t but depend on the 
spatial variables x1 and x2. The values u11 and u21 depend 
on the time variable according to the harmonic law in 
accordance with the vibrational oscillations that affect 
one of the walls of the hopper.  In addition, these values 
depend on the physico-mechanical and geometric 
parameters of the cuttings (average density, the radius of 
the circle in area coincides with the cross-sectional area 
of the cuttings, the coefficient of dry friction between the 
cuttings), the parameters of the hopper (the angle of 
inclination of the walls, the width of the unloading 
window, the coefficient of friction around the walls of the 
hopper), amplitude and frequency of harmonic vibrations, 
kinematic coefficient of viscosity and air density. 

In addition to the specified parameters, the speed 
components u1 and u2 implicitly depend on the function 

( )th  (see 41). As follows from the boundary condition, 
this function must satisfy a nonlinear differential equation 
of the first order 

( )( )tthxuAh ,,12ω=  (47) 

The solution of this equation, in the general case, can 
be found only by numerical methods with the help of a 
computer.  However, if we assume that the function h(t) 
depends on time according to a linear law (see 41) 

 ( ) 0hctth += , 
Then you can define a constant c. 
Indeed, let's put in (47) 01 =x . Then, taking into 

account (40) and (44), we have  

( )
δω

δ
p

pgc 


−

−=
12 1

  (48) 

This constant should be substituted in (39), (40) and 
(43), (44). This completes the construction of a 
mathematical model of the process of unloaded cuttings 
from the hopper. 
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IV. CONCLUSIONS 
To date, planters of woody energy crops are known 

exclusively with manual laying of planting material. 
Therefore, development of automation systems for this 
process will contribute to the possibility of rapid 
expansion of areas under energy plantations. 

 The simplest way to move the material when it is 
unloaded, is its movement under the influence of 
gravitational forces.  The theoretical foundations of such 
a movement do not have a single approach, and the 
specifics of the material for planting energy willow create 
additional difficulties for the development of a 
mathematical model of this process.  Building a 
mathematical model of the movement of energy willow 
cuttings will allow automating the planting process. 

 Accepting several assumptions, it is proposed to 
consider gravitationally unloaded cuttings from the point 
of view of hydrodynamic multiphase systems.  According 
to this approach, the collection of cuttings is considered 
as an incompressible fluid consisting of two phases: 
discrete, formed by the cuttings, and a continuous phase 
(gaseous - the medium between the cuttings).  And by 
applying the Laplace transformation to determine the 
Fourier coefficients, the system of linear algebraic 
equations of the motion speed of the pseudo-fluid is 
obtained (see (12), (13)), which give a general solution to 
the system of equations of motion of such a pseudo-fluid 
with the outline of initial and boundary conditions. 

 In order to obtain calculation formulas for the speed 
of fluid movement, we limited ourselves to the case of a 
symmetric hopper, which allowed us to obtain a solution 
to problem (1) - (3), (4) - (10) in a closed analytical form. 

 Formulas (33), (34) give an approximate value of the 
functions U1 and U2 with a relative error of less than 5%, 
which is sufficient for practical calculations. In order to 
obtain the solution of the original problem with the help 
of (33), (34), it is sufficient to apply the inverse 
transformation to the Laplace transform [26, 27]. 

Thus, the calculation formulas for the components of 
the speed of movement of the discrete phase (set of 
cuttings) of the fluid (45) and (46) were finally obtained, 
the individual components of which 22211211 ,,, uuuu  
are determined by formulas (39), (40) and (43), (44). 

This mathematical model describes the movement of 
cuttings of energy tree crops when unloading a slotted 
hopper, which creates opportunities for designing 
mechanisms for automatic unloading of such material, 
which in turn will allow to propose the design of 
automatic planters. 
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