
Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 71-78

Print ISSN 1691-5402
Online ISSN 2256-070X

https://doi.org/10.17770/etr2024vol4.8201
© 2024. Radostin Dimov, Zhaneta Savova. Published by Rezekne Academy of Technologies.

This is an open access article under the Creative Commons Attribution 4.0 International License.

71

Antivirus Performance Evaluation against
PowerShell Obfuscated Malware

Radostin Dimov
Artillery, AD and CIS Faculty,

National Military University „V. Levski”,
Shumen, Bulgaria

rsdimov95@gmail.com

Zhaneta Savova
Artillery, AD and CIS Faculty,

National Military University „V. Levski”,
Shumen, Bulgaria

zh.savova@yahoo.com

Abstract. In recent years, malware attacks have become
increasingly sophisticated, and the methods used by
attackers to evade Windows defenses have grown more
complex. As a result, detecting and defending against these
attacks has become an ever more pressing challenge for
security professionals. Despite significant efforts to improve
Windows security, attackers continue to find new ways to
bypass these defenses and infiltrate systems. The techniques
covered in this paper are all currently active and effective at
evading Windows defenses. Our findings underscore the
need for continued vigilance and the importance of staying
up to date with the latest threats and countermeasures.

Keywords: AMSI Evasion, Antivirus bypass, Defense
Evasion, EDR Evasion, PowerShell Obfuscation, Undetected
Payload

I. INTRODUCTION
With the growing complexity of cybersecurity threats,

it is becoming increasingly important to secure computer
systems against malicious attacks. One of the most
commonly targeted operating systems is Microsoft
Windows. As a result, many organizations and security
professionals are deploying various defensive measures
to protect their systems from malware attacks.

PowerShell (PS) is a powerful scripting language that
comes built into Microsoft Windows, making it a popular
choice for both defenders and attackers. While PS can be
used to implement defensive measures, attackers also
leverage its capabilities to evade defenses and
compromise Windows systems. PS scripts are highly
visible and can be easily detected by antivirus software,
but attackers can use obfuscation techniques to hide their
scripts and make them more difficult to detect.

This paper examines various PS obfuscation
techniques that attackers may use or combine as methods
to bypass commonly used antiviruses (AVs) and evade
detection. By understanding these techniques, defenders
can better protect their systems against malicious attacks
that utilize PS. This paper explores how these techniques
work and why they are effective. It also provides readers

with a comprehensive understanding of the risks
associated with PS scripts and the methods that attackers
use to evade windows defenses.

The analysis presented in this paper is based on
research and testing, as well as real-world observations of
attacks using these techniques. By highlighting these
techniques, we hope to contribute to the ongoing effort to
improve Windows security and protect against malicious
attacks.

The research objective is to evaluate the performance
of Antimalware Scan Interface (AMSI) and twelve
different AV software against obfuscated PS payloads.

A. AV Detection Methods
AV software uses a variety of techniques to detect

malware:

Signature-based detection - involves scanning files for
known malware signatures [1]. When the AV software
encounters a file that matches a known signature, it will
quarantine or delete the file [2]. However, this kind of
detection has some limitations as it is ineffective against
new and unknown threats.

Heuristic-based detection – relies on set of rules for
analyzing the file to determine whether it is malicious or
not [3]. This can include looking for specific patterns in
the code or program calls.

Behavior-based detection – involves analyzing the
behavior of processes running on a system to detect
malicious activity [4]. The AV software monitors the
system for suspicious behavior such as the process
attempting to communicate with a known malicious IP
address or downloading stage from a remote host. If a
process exhibits such behavior, it may be flagged as
malware [5].

Sandbox Detection – part of behavior-based detection
which involves running a file or process in a controlled
environment to observe its behavior. The AV software

https://doi.org/10.17770/etr2024vol4.8201
https://creativecommons.org/licenses/by/4.0/
mailto:rsdimov95@gmail.com
mailto:zh.savova@yahoo.com

Radostin Dimov et al. Antivirus Performance Evaluation against PowerShell Obfuscated Malware

72

creates a virtual sandbox where the file can be executed
safely without affecting the rest of the system [6]. By
observing the behavior of the file within the sandbox, the
AV software can determine whether it is malicious or not
[7].

However, in general the AV software is integrated
with AMSI which adds another layer of security. If a PS
payload performs to successfully bypass the AV static
signature detection, it has to handle with the AMSI
runtime detection [8]. Explaining how AMSI works and
its integration with the AV software is beyond the scope
of this research.

B. AV Evasion key techniques
There are various techniques which can be utilized to

bypass different AV solution, but in general we can
classify them as follows:

Encoding – technique used to hide the true nature of
the malware code from antivirus software. By
transforming the code into a different format using a
scheme, such as base64 or hexadecimal, the malware can
bypass signature-based detection. However, encoding is a
reversible process, and this technique is becoming less
effective as antivirus software improves its ability to
detect and decode encoded malware.

Encryption – uses encryption algorithms such as XOR
or Advanced Encryption Standard (AES) to encrypt the
payload. After execution the encrypted code is decrypted
in memory [9].

Obfuscation – consists of sub techniques for
modifying the code of the malware to change its
signatures and make it more difficult to detect [10]. This
includes modifying/reorganizing the source code, object
concatenation, splitting and merging techniques so the
new relevant signatures are not flagged as malicious [11].

Packers – tools used by attackers to compress and
encrypt executable files to make them harder to analyze
by security tools and detect malware. These tools are
used to evade detection by antivirus software and other
security tools. Packed executables are unpacked at
runtime, making it harder for security tools to detect and
analyze the original code [12].

Reflective Code Loading – technique used to load
code directly into a target process's memory, without
creating any files on the disk. Commonly used by stager
payloads for in-memory code execution. This allows the
malware to evade detection by traditional AV software,
which often relies on scanning for malicious files or
processes [13].

Sandbox Evasion – techniques used to avoid detection
when running in a sandbox (virtualization) environment
such as time-based evasion or system checks.

C. Review of related works
In 2018, Jagsir Singh and Jaswinder Singh [14] have

analyzed various obfuscation techniques including code
replacement, code reorganization, packing, renaming and
encryption. The research also reviewed some of the AV
detection mechanisms and highlighted effective
countermeasures to detect malware obfuscation
techniques.

Another research conducted by Kalogranis [15]
evaluated four tools, namely AVET (Antivirus Evasion
Tool), peCloack.py, Shellter, and Veil-Evasion, against
five of the most popular AV solutions – Avast,
Bitdefender, ESET Nod32, McAfee and Avira. The AV
products selection was based on the products’ market
share at that time. The research demonstrated that AVET
and Veil Evasion had the best performance.

In 2019, a group of authors evaluated the
effectiveness of AV evasion tools against windows
platform extending Kalogranis’ work in a subsequent
research [16]. The authors added the Metasploit payload
generator and a new tool – TheFatRat, repeating the same
tests used by Kalogranis. In comparison to Kalogrins’
research, the results showed that AVET and peCloack.py
achieved the best effectiveness against the tested AVs. Of
course, we have to keep in mind that some of the tools
are still in progress and are updated continuously while
the tests were performed in 2019.

Similarly, in [17], the author utilized Metasploit
payload generator, Hyperion, TheFatRat, Veil-Evasion
and Shellter against six AV platforms. The researcher
used and combined multiple techniques during the tests.
The results highlight Shellter as the most dangerous tool
followed by TheFatRat.

Evaluation of Bitdefender AV against different
evasion tools was conducted in [18]. The authors
analyzed the mentioned AV as one of the best AV
platforms and decided to evaluate the effectiveness of
nine different open-source tools against only this AV
software. The results showed that Phantom Evasion,
Onelinepy and PayGen have the highest percentage
evasion score against Bitdefender.

In [19] the authors presented a new packer product –
PEzoNG which is successor of PEzor – an existing open-
source PE and shellcode packer. However, authors
mentioned that PEzoNG is a completely different project
from PEzor as they only share a part of the name and the
building environment. The framework automates the
process of creating undetectable binaries targeting
Windows Environment. The new product features custom
loader, polymorphic obfuscation, anti-sandbox and anti-
analysis evasion mechanisms. The effectiveness of the
framework for AV detection is tested against 29 different
AV solutions and the product is compared to other
similar tools.

Even though several studies have evaluated the
defense evasion performance of automated tools that may
utilize PS as a feature, this research highlights manual
evasion methods which allows attackers to personalize
their techniques to the target environment and evade
specific detection methods. Manual obfuscation doesn’t
rely on obfuscation algorithms and adversaries can
customize the malware manually, making it harder to
detect. Adversaries can use a range of techniques, such as
renaming variables, splitting code into multiple functions,
adding unnecessary code, and encoding or encrypting the
code, to make it more difficult to analyze.

II. MATHERIALS AND METHODS
In this research, a virtual lab is developed using

VMware ESXi virtualization software to conduct
experiments that evaluate the detection capabilities of

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 71-78

73

AMSI and twelve different AV software against PS
defense evasion techniques. By using a virtual lab, we
can simulate real-world attack scenarios and assess the
performance of AV software against modern cyber
threats. The virtual environment - Fig. 1 consists of 13
virtual machines: a Kali Linux 2023.1 attacker box and
twelve fully updated Windows Server 2022 sandboxes
each running different AV platform with enabled AMSI
services. All virtual machines are connected in a separate
subnetwork with an IPv4 address range of
192.168.64.0/24 with the attacker box located at
192.168.64.128/24 and the sandboxes at 192.168.64.131-
142/24. The attacker box has an opened Netcat listener
on TCP port 4444, which will wait for TCP reverse shell
connections while testing the AVs detection capabilities
against different obfuscation techniques.

The AV platforms that have been selected have
demonstrated their exceptional detection capabilities over

the years. These platforms have consistently provided
accurate and reliable protection against various types of
threats. The utilized AV programs have been rigorously
evaluated and have proven their effectiveness in detecting
and mitigating known and emerging threats. Additionally,
the platforms have received numerous accolades and
recognition from reputable organizations in the
cybersecurity industry. Their track record of success and
continuous improvement make them a reliable and
trustworthy choice for protecting against evolving cyber
threats.

For the research objective an initial standard PS
reverse shell one-liner payload on Fig.2 is used
developed by Nikhil Mittal [20]. The payload is then
obfuscated with different techniques (Fig. 3) and
distributed to the AV sandboxes.

Fig. 1. Experimental network map

$client = New-Object System.Net.Sockets.TCPClient('192.168.64.128',4444); $stream
= $client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i =
$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 |
Out-String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);
$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.Close()

Fig. 2. Initial PowerShell Reverse Shell script [20]

Fig. 3. PowerShell Obfuscation techniques taxonomy

However, as mentioned, AMSI is usually integrated
with the AV program which means that we have an
additional runtime security layer provided by AMSI. The
experimental procedure follows the flowchart on Fig. 4.

Radostin Dimov et al. Antivirus Performance Evaluation against PowerShell Obfuscated Malware

74

Fig. 4. PowerShell execution flowchart

In the flowchart, there are two paths:

1. If the user enters the PS script directly, it is executed,
and the AMSI scans it for malicious code. If the script is
not detected as malicious, PS continues the execution. If
AMSI detect the code as malicious, an alert is passed
through the AV software and script execution is blocked.

2. If the user saves the PS script as a file on the disk, the
AV will compare the content of the script file to a
predefined database of signatures to identify known
malware. If a match is found, the AV software will
generate an alert and quarantine or remove the file. If no
match is found, the file will remain on the filesystem.

The proposed method can be useful in evaluating the
effectiveness of PS manual obfuscation against AMSI
runtime detection and AV software for improving their
capabilities to detect and prevent attacks that use defense
evasion techniques.

Overall, our approach provides a controlled
environment for testing AV software and enables us to
evaluate their detection capabilities against real-world
threats. The findings of this research may contribute to
enhancing the effectiveness of AMSI and AV software in
protecting against modern cyber threats.

III. RESULTS AND DISCUSSION
If we try to save the script on Fig. 2 on the filesystem

as PS script file with .ps1 extension, it will be
immediately flagged as malicious by Windows Defender
real-time protection. Real-time protection performs a
static signature scan against every new file saved in the
filesystem. On table 1 are shown the AVs detection
results of the tested script file.

TABLE 1 INITIAL REVERSE SHELL DETECTION RESULTS

№ AV Software Detection
Results collected November 2023 Static Detection
1 Microsoft Defender Detected
2 Avast Antivirus Detected
3 AVG Anti-Virus Detected
4 Avira Antivirus Undetected
5 Bitdefender Total Security Detected
6 ESET NOD32 Antivirus Detected
7 Fortinet Antivirus Undetected
8 Kaspersky Internet Security Detected
9 McAfee Endpoint Protection Detected

10 Sophos Detected
11 Malwarebytes Undetected

12 Symantec Detected
Results collected November 2023 Runtime Detection
1 AMSI Detected

The script is saved as PS file with .ps1 extension and
distributed to the AV sandboxes. The results show that the
script file is detected by most of the AVs (9/12) either by
signature-based detection or heuristic detection. Also, it is
detected when executed directly in PS by AMSI. As the
script is quite popular and already known to most of the
AVs providers, it is also detected as malicious by AMSI.
The next experiments perform obfuscation techniques to
evaluate the AVs performance and their detection
capabilities against PS payload.

A. Encoding (EN)

The proposed experiment aims to evaluate the AVs
static signature detection capabilities against encoded PS
payloads. The content of the PS Script file – Fig. 2 is
base64 encoded with a fixed number of iterations. The
encoded payload is then distributed to the AVs
sandboxes. After execution the script is decoded in
memory. The experiment is repeated with 1, 5, and 10
iterations of base64 encoding the fig. 2 code. The results
are presented in table 2. With 10 iterations of encoding,
we managed to break 11 of 12 AVs static signatures
detection, but not AMSI runtime detection.

As was mentioned earlier encoding is a reversible
process. In this example when the encoded script is
passed to PS, it is first decoded from base64 and then
executed which triggers AMSI runtime detection [21]. An
efficient way to bypass AMSI is to encode the strings and
decode them within the code [22]. Fig. 5 and 6 shows a
brief example where the first command is detected by
AMSI as malicious while the encoded one remains
undetected.

TABLE 2 BASE64 ENCODING DETECTION RESULTS
№ AV i=1 i=5 i=10
Results collected November 2023 Static Detection
1 Defender Detected Detected Undetected
2 Avast Undetected Undetected Undetected
3 AVG Undetected Undetected Undetected
4 Avira Undetected Undetected Undetected
5 Bitdefender Detected Detected Undetected
6 NOD32 Undetected Undetected Undetected
7 Fortinet Undetected Undetected Undetected
8 Kaspersky Undetected Undetected Undetected
9 McAfee Undetected Undetected Undetected

10 Sophos Detected Detected Detected
11 Malwarebytes Undetected Undetected Undetected
12 Symantec Undetected Undetected Undetected

Results collected November 2023 Runtime Detection
1 AMSI Detected Detected Detected

"Invoke-Mimikatz"
Can be encoded as:
[System.Text.Encoding]::Unicode.GetSt
ring([System.Convert]::FromBase64Stri
ng('SQBuAHYAbwBrAGUALQBNAGkAbQBpAGsAY
QB0AHoA'))

Fig. 5. Encoding Commands

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 71-78

75

Fig. 6. AMSI Evasion with string encoding

Overall, using base64 encoding, the proposed
experiment performed to successfully bypass AVs static
signatures detection and provides an effective approach
to evade AMSI detection.

B. Object Renaming (OR)
A technique which can be utilized for breaking

signatures detection and involves changing the names of
variables/functions/classes in the code, without changing
the functionality of the code itself. This can be done
manually or by using tools that automatically rename the
objects. Fig. 7 is an example of renaming the variables
within the initial PS code on Fig. 2 with low entropy
string values. As the script on Fig. 2 contains 8 variables,
the experimental results on table 3 evaluate AVs detection
capabilities against this technique depending on the
number of substituted variables (n).

$client $aaaaaaaaaaaaaaaaaaaa
$stream $bbbbbbbbbbbbbbbbbbbb
$bytes $cccccccccccccccccccc
$i $dddddddddddddddddddd
$data $eeeeeeeeeeeeeeeeeeee
$sendback $ffffffffffffffffffff
$sendback2 $gggggggggggggggggggg
$sendbyte $hhhhhhhhhhhhhhhhhhhh
a) Variables b) Renamed Examples

Fig. 7. Renaming Variables

Substituting all variables within the script results in
evading 7 of 12 AVs detection. This technique is also
valid for other programming languages such as python,
C# or C++. By renaming variables, the malware author
can change the "signature" of the code, making it more
difficult for AV software to detect. However, AMSI
detection is still present. In other words, the script can be
saved on the filesystem, but after execution it is detected
as malicious by AMSI.

TABLE 3 OBJECT RENAMING DETECTION RESULTS

№ AV Software n=1 n=4 n=8
Results collected November 2023 Static Detection
1 Defender Detected Undetected Undetected
2 Avast Detected Detected Undetected
3 AVG Detected Detected Undetected
4 Avira Undetected Undetected Undetected
5 Bitdefender Detected Detected Detected
6 NOD32 Detected Detected Detected
7 Fortinet Undetected Undetected Undetected
8 Kaspersky Detected Detected Detected
9 McAfee Detected Undetected Undetected

10 Sophos Detected Detected Detected
11 Malwarebytes Undetected Undetected Undetected
12 Symantec Detected Detected Detected
Results collected November 2023 Runtime Detection
1 AMSI Detected Detected Detected

By splitting the script and performing part code
execution, we see that the last part of the code –
"$Client.Close()" is triggering the AMSI detection. This
doesn’t mean that this part of the code is malicious itself,
but combined with all the other parts of the script leads to
a malicious result.

C. Randomize character cases (RC)
This leverages the fact that PS is case-insensitive,

meaning that the casing of commands, variables, and
arguments does not affect their execution. Exploiting this
characteristic, obfuscators introduce variations in
character capitalization throughout the code, making it
visually distinct from the original form. This alteration
disrupts simple string-based pattern matching techniques,
as the obfuscated code no longer matches known
signatures or standard conventions. The obfuscated code
can feature a range of randomizations, including
uppercase-to-lowercase, lowercase-to-uppercase, or even
selectively mixing capitalization within words or
commands [23]. These modifications are applied to
specific characters, leaving the overall structure and
functionality of the code intact. The goal is to create a
visually jumbled representation that evades detection
algorithms and human analysis, while still allowing the
interpreter to execute the malicious instructions correctly.
Fig. 8 represents an example of showcasing the
randomization of char cases within a PS code.

IEX Get-Process iEx "GeT-PrOcEsS"
$var1="example" $vAr1="eXaMplE"
a)Original code b)Obfuscated code

Fig. 8. Char cases randomization

This method is implemented into the initial PS script
code – Fig. 2. Then the updated script is distributed to the
AVs sandboxes. The results are shown on table 4. It may
look simply but the detection results represent how
powerful this technique could be in breaking AVs
signatures.

D. Concatenation (CC)
Concatenation is the process of combining multiple

strings or variables into a single string. This operation is
frequently used in PS scripts to create more complex and
meaningful output, for example, to construct a custom
error message, generate a file path or URL, or format text
for display. There are several ways to concatenate strings
in PS, including the use of the "+" operator, the "-join"
operator, and the string interpolation feature [24]. An
example of concatenating strings is shown on Fig. 9.

$string='192.168.1.121'
$string='192.16'+'8.1.121'
$string='192.1'+'68.1'+'.121'
$string='19'+'2.16'+'8.1.1'+'21'

Fig. 9. String Concatenation

The fourth line of code for example creates a new
string by concatenating four separate string literals, '19',
'2.16', '8.1.1', and '21'. After the fourth line of code runs,
the original value of the $string variable, '192.168.1.121',
is replaced with the concatenated string. The resulting
value of $string is again '192.168.1.121'. A simple
concatenation as shown on Fig. 9 is applied into the

Radostin Dimov et al. Antivirus Performance Evaluation against PowerShell Obfuscated Malware

76

strings of the initial script – Fig. 2. AVs detection results
for the discussed method are presented in table 4.

E. Commands Substitution (CS)
Substituting commands with similar ones that have

the same functionality can be used as a technique by
malware authors to evade detection by AV systems. By
replacing suspicious or known malicious commands with
benign or less detectable alternatives, malware can
bypass signature-based detection mechanisms and appear
innocuous to security software. This technique takes
advantage of the vast number of available PS cmdlets and
functions that provide similar functionality but have
different names or syntax. By using these alternative
commands, malware authors can camouflage their
malicious activities and make the code less recognizable
to AV engines. Fig. 10 provides an example approach in
substituting pwd cmdlet. This technique allows malware
to evade signature-based detections, as the substituted
commands do not match known malicious patterns.

Utilizing .NET Framework
[System.IO.Directory]::GetCurrentDire
ctory()
Using different cmdlet
Get-location
using Get-location Alias
gl

Fig. 10. pwd cmdlet substitution example methods

F. Cmdlet obfuscation (CO)
In PS, cmdlets can be obfuscated by adding single or

double quotes between the characters. The cmdlets can be
broken up into multiple segments, and single/double
quotes are added around each character. For example,
consider the cmdlet Get-ChildItem. Using this method,
the cmdlet can be broken up into multiple segments, with
single or double quotes around each character, as follows:

G'e't'-'C'h'i'l'd'i't'e'm

When interpreted by PS, the concatenated example is
equivalent to the original cmdlet Get-ChildItem.
Implementing this technique in the initial reverse shell
code – Fig. 2, then the following cmdlets can be
substituted with the values shown on Fig. 11. This makes
the string harder to read, but again, it is still functional
when interpreted by PS [25]. The AVs detection results of
the discussed method against the PS code on Fig. 2 are
shown on table 4.

iex # Out-String
i'e'x O'u't-S't'ri'n'g
i''ex Ou""t-S"tr"i"n"g
i"e"x O'u't-St"r"i'n'g
i''e"x" Ou""t'-'S""t'r'in''g
i""e''x"" Ou""t'-'S''t"r"i'n'g

Fig. 11. Cmdlet Obfuscation

TABLE 4 SINGLE TECHNIQUES RESULTS
№ AV RC CC CO
Results collected November 2023 Static Detection
1 Win Defender Undetected Detected Undetected
2 Avast Undetected Undetected Undetected
3 AVG Undetected Undetected Undetected
4 Avira Undetected Undetected Undetected
5 Bitdefender Detected Detected Detected

6 NOD32 Detected Detected Detected
7 Fortinet Undetected Undetected Undetected
8 Kaspersky Detected Detected Detected
9 McAfee Undetected Undetected Undetected

10 Sophos Undetected Detected Detected
11 Malwarebytes Undetected Undetected Undetected
12 Symantec Detected Detected Detected
Results collected November 2023 Runtime Detection
1 AMSI Detected Detected Detected

G. Adding junk code (JC)
To evade detection, attackers may intentionally insert

extraneous or irrelevant code into their PS payloads. This
additional code serves no functional purpose and is
designed to confuse or obfuscate the actual malicious
commands. By adding junk code, the attackers can make
their payloads more difficult for security systems to
analyze and identify as malicious. Here’s a brief example:

These lines serve no purpose
Some irrelevant code
Actual malicious code
iex "malicious command"
More unnecessary code

Fig. 12. (A) Add Commented-out code block

$randomvar1 = "Hello";
$randomvar2 = 123
Function unnecessaryfunc {
 # Irrelevant code
}
Actual malicious code
iex "malicious command"

(B) Add unnecessary variables and/or functions

Sleep 0.1; sleep 0.2;
iex "malicious command";
sleep 0.3

(C) Add unnecessary sleep timers

Get-Process | Out-Null;
Get-Date | Out-Null;
iex "malicious command"

(D) Add unrelated function calls

These examples illustrate how junk code can be
introduced to PS payloads, making it more challenging
for security systems to identify and analyze the actual
malicious commands. However, it's important to note that
these evasion techniques can vary widely depending on
the specific context and objectives of the attacker.

H. Summary – Putting all together
The following experiment integrates several

techniques outlined in sections A to G, incorporating
them directly into the initial PS script – Fig. 2. By
utilizing different combinations, malware authors can
tailor their obfuscation strategy based on their specific
goals and the anticipated defense mechanisms they aim to
bypass. The resulting outcomes are presented in table 5.
The combined techniques aim to enhance malware
obfuscation and evasion capabilities in various ways.
The results show that script execution can successfully
establish TCP session with an attacker and bypasses
AMSI runtime detection as shown on Fig. 13. Table 5

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 71-78

77

provides a comprehensive overview of the effectiveness
and impact of each technique when combined with
another. Note that the purpose of the research was to
evaluate the effectiveness of the discussed techniques in
terms of detection evasion, code obfuscation, and overall

impact on the detection rate of AV systems. By
combining these techniques, the experiment sought to
demonstrate the potential of employing multiple
obfuscation strategies to increase the resilience of PS-
based malware against detection and analysis.

TABLE 5 INTEGRATING ALL TECHNIQUES RESULTS

№ AV
Software

OR+RC OR+RC+CC OR+RC+
CC+CS

OR+RC+
CC+CS+CO

OR+RC+CC+
CS+CO+JC

EN+OR+RC+
CC+CS+CO+JC

Results collected November 2023 Static Detection
1 Microsoft Defender Undetected Undetected Undetected Undetected Undetected Undetected
2 Avast Undetected Undetected Undetected Undetected Undetected Undetected
3 AVG Undetected Undetected Undetected Undetected Undetected Undetected
4 Avira Antivirus Undetected Undetected Undetected Undetected Undetected Undetected
5 Bitdefender Detected Detected Detected Undetected Undetected Undetected
6 ESET NOD32 Detected Detected Detected Detected Detected Undetected
7 Fortinet Undetected Undetected Undetected Undetected Undetected Undetected
8 Kaspersky Antivirus Detected Detected Detected Undetected Undetected Undetected
9 McAfee Undetected Undetected Undetected Undetected Undetected Undetected

10 Sophos Undetected Undetected Undetected Undetected Undetected Undetected
11 Malwarebytes Undetected Undetected Undetected Undetected Undetected Undetected
12 Symantec Detected Detected Detected Detected Undetected Undetected
Results collected November 2023 Runtime Detection
1 AMSI Detected Detected Undetected Undetected Undetected Undetected

Fig. 13. (A) Script Execution (B) Session Establishment

IV. CONCLUSIONS
In conclusion, this research paper examined different

obfuscation techniques employed in PS malware and
their impact in AV detection. A virtual environment lab
was prepared emulating an attacker box and malware
distribution against 12 different AV sandboxes. At the
time that these tests were performed, ESET NOD32
demonstrated the best performance among the discussed
obfuscation techniques, followed by Symantec. However,
as manual obfuscation does not rely on algorithms, it is
important to note that the overall effectiveness of the AV
systems strongly depends on the specific implementation
of these techniques within the malicious script.
Notwithstanding, the gathered results may still change
over time as AVs signatures are frequently updated to
detect new and changed payloads.

The findings showcased that utilizing a single
obfuscating technique does not necessarily affect AV
detection capabilities. On the other hand, the integration
of multiple obfuscation techniques significantly enhance
the malware's evasion capabilities resulting in a reduced
detection rate and increased difficulty in analyzing the
malicious code. These results highlight that the
recommended approach in breaking both static-signature
detection and runtime detection is by combining different
obfuscation techniques, particularly in the context of red
team activities.

Moving forward, future research could focus on
exploring new obfuscation techniques and developing
different detection methods to counter emerging threats.

Additionally, continued collaboration between academia
and industry will be crucial in advancing cybersecurity.

ACKNOWLEDGEMENTS
This publication was prepared in fulfillment of

National Scientific Program – Security and Defense,
financed by the Ministry of Education and Science of the
Republic of Bulgaria.

REFERENCES

[1] P. Shijo and A. Salim, “Integrated Static and Dynamic Analysis for
Malware Detection,” in International Conference on Information
and Communication Technologies, 2015.

[2] A. B. Ajmal, A. Anjum, A. Anjum and M. A. Khan, “Novel
Approach for Concealing Penetration Testing Payloads Using Data
Privacy Obfuscation Techniques,” in IEEE 18th International
Conference on Smart Communities: Improving Quality of Life
Using ICT, IoT and AI (HONET), Karachi, Pakistan, 2021.

[3] F. Pecorelli, F. Palomba, D. D. Nucci and A. D. Lucia, “Comparing
Heuristic and Machine Learning Approaches for Metric-Based
Code Smell Detection,” in IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), Montreal, QC,
Canada, 2019.

[4] Ö. Aslan and R. Samet, “A Comprehensive Review on Malware
Detection Approaches,” IEEE Access, vol. vol. 8, pp. 6249-6271,
2020.

[5] M. J. e. a. Faruk, “Malware Detection and Prevention using
Artificial Intelligence Techniques,” in IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA, 2021.

[6] A. Sharma, B. B. Gupta, A. K. Singh and V. Saraswat,
“Orchestration of APT malware evasive manoeuvers employed for
eluding anti-virus and sandbox defense,” Computers & Security,
vol. Volume 115, 2022.

Radostin Dimov et al. Antivirus Performance Evaluation against PowerShell Obfuscated Malware

78

[7] N. Miramirkhani, M. Appini, N. Nikiforakis and M.
Polychronakis, “Spotless Sandboxes: Evading Malware Analysis
Systems Using Wear-and-Tear Artifacts,” in IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 2017.

[8] D. Hendler, S. Kels and A. Rubin, “Detecting Malicious
PowerShell Commands using Deep Neural Networks,” in
ASIACCS '18: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018.

[9] A. Al-Hakimi and A. Bakar Md Sultan, “Hybrid Obfuscation of
Encryption,” IntechOpen, 2023.

[10] K. Oosthoek and C. Doerr, “SoK: ATT&CK Techniques and
Trends in,” in In: Chen, S., Choo, KK., Fu, X., Lou, W., Mohaisen,
A. (eds) Security and Privacy in Communication Networks
SecureComm 2019, 2019.

[11] H. Xu, Y. Zhou and J. Ming, “Layered obfuscation: a taxonomy of
software obfuscation techniques for layered security,”
Cybersecurity 3, 9, 2020.

[12] O. Or-Meir, N. Nissim, Y. Elovici and L. Rokach, “Dynamic
Malware Analysis in the Modern Era—A State of the Art Survey,”
ACM Computing Surveys, vol. vol. 52, 2019.

[13] Sudhakar and S. Kumar, “An emerging threat Fileless malware: a
survey and research challenges,” Cybersecurity 3, 1, 2020.

[14] J. Singh and J. Singh, “Challenge of Malware Analysis: Malware
obfuscation Techniques,” International Journal of Information
Security Science, vol. 7, no. 3, pp. 100-110, September 2018.

[15] C. Kalogranis, AntiVirus Software Evasion: An Evaluation of the
AV Evasion Tools. Ph.D. Thesis, Piraeus, Greece,: University of
Piraeus, Department of Digital Systems, 2018.

[16

]

S. Aminu, Z. Sufyanu, T. Sani and A. Idris, “Evaluating the
effectiveness of antivirus evasion tools against windows platform,”
FUDMA Journal of Sciences Vol. 4 No. 1, pp. 89-92, 2020.

[17] D. Samociuk, “Antivirus Evasion Methods in Modern Operating
Systems,” Applied Sciences, vol. 13(8):5083, 2023.

[18] F. Garba, F. Yarima, K. Kunya, F. Abdullahi, A. Bello, A. Abba and
A. Musa, “Evaluating Antivirus Evasion Tools AgainstBitdefender
Antivirus,” in In Proceedings of the International Conference on
FINTECH Opportunities and Challenges, Karachi, Pakistan, 2021.

[19] G. D. C. D. &. B. G. Bernardinetti, “PEzoNG: Advanced Packer
For Automated Evasion On Windows.,” Journal of Computer
Virology and Hacking Techniques 18, p. 315–331, 2022.

[20] N. S. Mittal, “week of powershell shells day 1,” May 2015.
[Online]. Available:
http://www.labofapenetrationtester.com/2015/05/week-of-
powershell-shells-day-1.html. [Accessed July 2023].

[21] D. Hendler, S. Kels and A. Rubin, “AMSI-Based Detection of
Malicious PowerShell Code Using Contextual Embeddings,” in In
Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (ASIA CCS '20), New York, NY, 2020.

[22] M. Mimura and Y. Tajir, “Static detection of malicious PowerShell
based on word embeddings,” Internet of Things, vol. Volume 15,
2021.

[23] D. Ugarte, D. Maiorca, F. Cara and G. Giacinto, “PowerDrive:
Accurate De-obfuscation and Analysis of PowerShell Malware.,”
in In: Perdisci, R., Maurice, C., Giacinto, G., Almgren, M. (eds)
Detection of Intrusions and Malware, and Vulnerability
Assessment DIMVA, 2019.

[24] J. Klasmark, Detecting PowerShell Obfuscation Techniques using
Natural Language Processing, Dissertation, KTH Royal Institute of
Technology, 2022.

[25] A. Rousseau, “Hijacking .NET to Defend PowerShell,” Malware
Research and Threat Intel, 2017.

	I. Introduction
	II. matherials and methods
	III. Results and discussion
	IV. Conclusions

