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Abstract. The Reed-Solomon (RS) codes, proposed in 
1960 by Irving Reed and Gustav Solomon as a subset of 
error-correcting codes, have many current applications. 
The most significant of which are data recovery in storage 
systems, including hard drives, minidiscs, CDs, DVDs, 
Google's GFS, BigTable, and RAID 6, as well as in 
communication systems such as DSL, WiMAX, DVB, 
ATSC, and satellite communications. Additionally, RS codes 
are used as Bar codes in management and advertising 
systems, such as PDF-417, MaxiCode, Datamatrix, QR 
Code, and Aztec Code. Nowadays, RS codes over Galois 
Fields GF(2m) with base 2 are commonly used in these 
applications, with the GF(28) field being the most widely 
used. This allows all 256 values of a byte to be represented 
as a polynomial with 8 binary coefficients over GF(28). 
Considering RS codes as cyclic codes in GF(2m) fields, as 
well as the validity of mathematical dependencies in 
arbitrary field GF(pm), is a motivation to verify and 
generalize the idea of generating RS codes in a field with 
base other prime than 2. As a result, the paper derives the 
specific features of the construction of Reed-Solomon codes 
by considering them as a family of codes over any field 
GF(pm) whose base is a prime p other than 2. The paper also 
discusses the unique properties of basic arithmetic 
operations in the arbitrary field GF(pm), which arise from 
the non-uniqueness of the inverse elements a and -a in a 
field with base other than 2. 

Keywords: BCH Codes, Error Correcting Codes, Extended 
Galois Field, p-ary Reed-Solomon Codes. 

I. INTRODUCTION 

The Reed-Solomon (RS) codes are non-binary cyclic 
error correction codes proposed by Irving Reed and 
Gustav Solomon in 1960 [1]. By adding symbols to check 
the data, the RS code can detect any combination of up to 
a maximum of t erroneous symbols or correct up to ⌊t/2⌋ 

symbols. Here ⌊x⌋ denotes the largest integer less than or 
equal to x. Using the RS code as an erasure correction 
code, it can correct up to a maximum of t known erasures, 
or it can detect and correct combinations of errors and 
erasures. An advantage of RS codes is that they are 
suitable for correcting burst errors because a sequence of 
m + 1 bit errors can affect at most two symbols of size m. 

Reed-Solomon codes are most commonly used in data 
storage systems to correct packet errors caused by media 
defects. The information recorded on a compact disc (CD) 
is divided into segments called frames, with each frame 
containing 24 information symbols. Each symbol is 
represented as an element of the Galois field GF(28). The 
code used to correct errors is called a Cross-Interleaved 
Reed-Solomon code (CIRC) because it is obtained by a 
cross-interleaving process of two shortened Reed-
Solomon codes [2], [3]. The first code C1, which uses 
symbols from GF(28) as input information, is the 
shortened Reed-Solomon code (32, 28). The second code 
C2 is a shortened (28, 24) Reed-Solomon code again 
operating in the GF(28). This sets the rate of the CIRC 
code to r = 24/32 = 3/4 = 0,75. Both codes C1 and C2 
have a minimum distance dmin = 5, which determines their 
ability to correct up to a maximum of 2 errors per 
codeword or to perform up to a maximum of 5 erasure 
corrections. 

Digital Video Discs (DVDs) use a similar error 
correction scheme called Reed-Solomon Product Code 
(RS-PC) [4]. In it, the two truncated Reed-Solomon codes 
C1 and C2 are relatively longer than those in CIRC, being 
(208, 192) and (182, 172) respectively. In addition, the 
RS-PC rate is much higher  
r = 172.192/(182.208) = 0.872. Blu-ray Discs use an error 
correction system with an efficient way of indicating 
packet errors called Picket Code (PC). Pickets are special 
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columns inserted at regular intervals between the columns 
of main data. The underlying data is protected by an 
efficient Reed-Solomon code. The pickets are protected 
by a second, independent and extremely powerful Reed-
Solomon code. During decoding, the pickets are first 
corrected, and the information obtained can be used to 
calculate the location of possible errors in decoding the 
underlying data. 

As a result of the use of error correction codes in data 
storage systems, the maximum packet error length is 
about 500 bytes for the CIRC code, 2200 bytes for the 
RS-PC code, while for the PC it is about 9900 bytes. The 
DVD RS-PC code can reduce the random input error from 
2.10-2 to a data error of 10-15, which is about 10 times 
better than the CD [4]. Under the same conditions, the 
possible error in the data on an optical disc using the 
Pickett code is 1,5.10-18, while on an optical disc using 
RS-PC it is 5,7.10-7 [5]. 

Most two-dimensional barcodes, such as QR Code, 
PDF-417, MaxiCode, Aztec Code, etc., use Reed-
Solomon codes to correct errors if part of the barcode is 
damaged [6]. Modern data transmission systems used in 
digital television, satellite space and wireless 
communications use specialized concatenated codes, one 
of which is the Reed-Solomon code [7], [8]. 

Erasure-coded storage using Reed-Solomon codes is 
now widely used in large, distributed storage systems, 
including Google File System (GFS), Facebook Hadoop 
Distributed File System (HDFS), Windows Azure storage, 
and data centers [9], [10], [11]. 

Nowadays, multi-level signals and sequences are 
emerging as a prominent feature in today's high-speed 
communication systems. New methods such as the 
PWAM signaling scheme [12], 4D PAM-7 [13], and 
Automotive Ethernet [14] are used in in-vehicle 
networking. These methods utilize seven-level pulse 
amplitude modulation (PAM-7), Four-Dimensional Five 
Level Pulse Amplitude Modulation (4D-PAM-5), and 
PAM-3 symbols to improve data transfer rates compared 
to wire infrastructures. 

Real-world applications of Reed-Solomon codes 
mostly use a Galois field representation of GF(28) 
symbols [15]. In many research papers, the theoretical 
construction of Reed-Solomon codes is presented over an 
arbitrary field GF(q) of q elements, where q is a power of 
a prime number. Despite this theoretical representation, 
the examples explaining Reed-Solomon codes are over 
fields of base 2. Therefore, to ensure the error correction 
features of new multi-level sequences, advanced methods 
are required to generate not only binary but also 
nonbinary symbols. The aim of this article is to provide a 
detailed discussion on constructing Reed-Solomon codes 
as a family of codes over an arbitrary Galois field GF(pn). 
It also highlights the unique characteristics of the codes 
when operating over finite fields of base other prime than 
2. 

II. MATERIALS AND METHODS 

There are two methods for the construction of Reed-
Solomon codes. The first method views the codeword as a 
sequence of values proposed in Reed and Solomon's 

original 1960 paper “Polynomial codes over certain finite 
fields” [1]. The second method views Reed-Solomon 
codes as Bose-Chaudhuri-Hocquenghem (BCH) codes 
[16], where the codeword is represented as a sequence of 
coefficients. 

A. Original Presentation of Reed-Solomon Codes 
Reed and Solomon consider a field K of degree n over 

a field Z2 of 2 elements [1]. They propose a code E by 
which each k-tuple (a0, a1, …, ak-1) of K is matched by a 
2n-tuple (m(0), m(α), m(α2), …, m(1)) of K. Here m(x) is a 
polynomial of degree k – 1 

𝑚𝑚(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1, (1) 

where ai, ∈ K, k < 2n, and α is the primitive n−th unit root 
in K. Here, the k-tuple represents the encoded message 
and the and the 2n-tuple represents the transmitted 
message. The authors prove that this code corrects (2n – 
k)/2 or (2n – k – 1)/2 symbols, depending on whether k is 
an even or odd number. 

B. BCH Representation of Reed-Solomon Codes 
Instead of sending al`l values of message polynomial 

m(x) (1), the transmitter computes another polynomial s(x) 
of degree at most n – 1 (where n = q – 1) and sends the n 
coefficients of this polynomial. The polynomial s(x) is 
obtained by multiplying the message polynomial m(x) of 
degree at most k – 1 by the generator polynomial g(x) of 
degree n – k, which is used in the transmitter and receiver 
of the coding system. 

The generating polynomial g(x) is defined as a 
polynomial whose roots are the elements α, α2, …, αn – k 
of the field K. Thus, g(x) can be expressed as: 

g(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼)(𝑥𝑥 − 𝛼𝛼2) … (𝑥𝑥 − 𝛼𝛼𝑛𝑛−𝑘𝑘) =
= 𝑔𝑔0 + 𝑔𝑔1𝑥𝑥 + ⋯
+ 𝑔𝑔𝑛𝑛−𝑘𝑘−1𝑥𝑥𝑛𝑛−𝑘𝑘−1 + 𝑥𝑥𝑛𝑛−𝑘𝑘 . 

(2) 

The transmitter sends n = q – 1 polynomial 
coefficients 

𝑠𝑠(𝑥𝑥) = 𝑚𝑚(𝑥𝑥)𝑔𝑔(𝑥𝑥). (3) 

The receiver considers the received symbols as 
coefficients of the polynomial r(x). If there are no 
transmission errors (r(x) = s(x)), then by dividing the 
polynomial r(x) by g(x) the message polynomial m(x) can 
be obtained 

𝑟𝑟(𝑥𝑥)
g(𝑥𝑥) = 𝑚𝑚(𝑥𝑥). 

(4) 

If transmission errors occur, the division will produce 
a remainder e(x) with a lower degree than that of g(x), 
indicating the presence of errors, i.e. 

𝑟𝑟(𝑥𝑥) = 𝑚𝑚(𝑥𝑥). g(𝑥𝑥) + 𝑒𝑒(𝑥𝑥). (5) 

If there is an error e(x) ≠ 0, the receiver can calculate 
r(x) for all roots of g(x). This will result in a system of 
equations that will determine which coefficients have 
errors and the values of those errors. The Berlekamp-
Messy algorithm [17] or extended Euclidean algorithm 
[18], and the parity polynomial 

ℎ(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼0)(𝑥𝑥 − 𝛼𝛼𝑛𝑛−𝑘𝑘+1) … (𝑥𝑥 − 𝛼𝛼𝑛𝑛−1) (6) 
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= ℎ0 + ℎ1𝑥𝑥 + ⋯+ ℎ𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝑥𝑥𝑘𝑘 

are used to accomplish this. 

C. Key Features of Reed-Solomon Codes 
Reed-Solomon codes are linear block cyclic (n, k) 

codes of length n and size k. The minimum Hamming 
distance of the RS (n, k) code is 

𝑑𝑑𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑛𝑛 − 𝑘𝑘 + 1. (7) 

For an arbitrary systematic (n, k) code is satisfied 

𝑑𝑑𝑚𝑚𝑚𝑚𝑛𝑛 ≤ 𝑛𝑛 − 𝑘𝑘 + 1, (8) 

since in any (n, k) code, a non-zero codeword with a 
weight of at most n – k + 1 can always be created by 
resetting all but one of the k information digits. 

The code executed with equality at (8) is called 
Maximum Distance Separable (MDS). As shown in (7), 
all RS codes are MDS. MDS codes have special 
properties because they have the maximum possible dmin 
at their length n and size k. For instance, any set of k 
columns of their generator matrix G are linearly 
independent, meaning any k positions in the block can be 
used as information. Additionally, the weight distribution 
of MDS codes can be easily determined. 

The RS code's correction capabilities are determined 
by its minimum distance, dmin. It can correct up to t = (n – 
k)/2 erroneous symbols. If the error locations are known 
in advance, as defined by the erasure term, the RS code 
can correct up to a maximum of 2t erasures. The RS code 
is capable of correcting any combination of errors and 
erasures, provided that they fall within its correction 
capabilities 

2𝑒𝑒 + 𝑠𝑠 ≤ 𝑛𝑛 − 𝑘𝑘, (9) 

where e is the number of errors and s is the number of 
erasures in the block. 

RS codes cannot be binary since the length n of the RS 
code is smaller than the size of the encoding alphabet. RS 
codes over GF(2m) are of particular interest. For instance, 
for m = 8, RS codes can have a length of n = 28 – 1 = 255 
symbols, each 8 bits long. 

Since GF(2m) is a vector space of size m over GF(2), 
each element of GF(2m) can be represented by m bits, 
which are coefficients in the linear combination of 
selected basis vectors. The element 0 is represented by a 
zero binary m-tuple (0, 0, ..., 0), regardless of the chosen 
basis elements. When using this representation, the (n, k) 
code over GF(2m) becomes a binary (mn, mk) code with a 
minimum distance mind ′  at least as large as the minimum 
distance of the code it forms. This is because each 
nonzero element of GF(2m) has at least one '1' in its binary 
m-tuple representation. The case where mind ′  > dmin is also 
possible. Therefore, equivalent binary codes are useful for 
their burst error correction property. Each burst of errors 
(t – 1) m + 1 or fewer consecutive bits will appear as at 
most t errors in the GF(2m) symbols. Thus, a decoding 
algorithm for GF(2m) code that corrects all combinations 
of t or fewer errors will also automatically correct all 
bursts of consecutive errors of length less than or equal to 
(t – 1) m + 1 bits. Reed-Solomon codes are ideal for 

correcting burst errors due to their largest possible dmin, 
given their length n = 2m – 1 (or a divisor of it) and size k 
(1 ≤ k < n). 

Next, we present an algorithm for generating a family 
of RS codes over an arbitrary field GF(pm), where p is an 
arbitrary prime number. For brevity, these codes will be 
referred to as p-ary Reed-Solomon codes or pRS codes. 

III. RESULTS AND DISCUSSION 

This section provides the mathematical background of 
an extended Galois field GF(pn) and the main steps of the 
proposed algorithm. It also specifies the algorithm's 
features for prime p greater than 2 and give some results 
from algorithm’s testing. 

A. Mathematical Background of an Extended 
Galois Field GF(pn) 
The field GF(q) is an extension of the Galois Field 

GF(p) with a power of n if the order of GF(q) can be 
expressed as a power of the prime p (q = pn), where n is a 
positive (n ≥ 2). In these cases, we use the notation 
Extended Galois Field GF(pn). 

To create an Extended Galois Field GF(pn), select an 
irreducible polynomial p(x) over GF(p) [19]. Let α be a 
root of p(x) such that p(α) = 0. The elements of the field 
GF(pn) are polynomials of degree n – 1, which belong to 
the ring GF(p)[x] and have coefficients in GF(p) 

𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛) = {𝑎𝑎𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝛼𝛼 + 𝑎𝑎0 | 𝑎𝑎𝑚𝑚
∈ 𝐺𝐺𝐺𝐺(𝑝𝑝)}. 

(10) 

Arithmetic in GF(pn) involves polynomial arithmetic 
modulo the irreducible polynomial p(x). The two main 
algebraic operations are addition (13) and multiplication 
(14), which are defined for two elements f(α) (11) and 
g(α) (12) of GF(pn). 

𝑓𝑓(𝛼𝛼) = �𝑎𝑎𝑚𝑚𝛼𝛼𝑚𝑚
𝑛𝑛−1

𝑚𝑚=0

= 

= 𝑎𝑎𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝛼𝛼 + 𝑎𝑎0 

(11) 

g(𝛼𝛼) = �𝑏𝑏𝑚𝑚𝛼𝛼𝑚𝑚
𝑛𝑛−1

𝑚𝑚=0

= 

= 𝑏𝑏𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑏𝑏1𝛼𝛼 + 𝑏𝑏0 

(12) 

Addition in GF(pn): 

�𝑓𝑓(𝛼𝛼) + g(𝛼𝛼)� = 

= �[(𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚) mod 𝑝𝑝].𝛼𝛼𝑚𝑚 ∈ 𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛)
𝑛𝑛−1

𝑚𝑚=0

. 

(13) 

Multiplication in GF(pn): 

𝑟𝑟(𝛼𝛼) = 𝑓𝑓(𝛼𝛼).𝑔𝑔(𝛼𝛼) mod 𝑝𝑝(𝛼𝛼)

= � � 𝑐𝑐𝑘𝑘𝛼𝛼𝑚𝑚
2(𝑛𝑛−1)

𝑘𝑘=0

�  mod 𝑝𝑝(𝛼𝛼). 

(14) 

The polynomial resulting from the multiplication of 
𝑓𝑓(𝛼𝛼).𝑔𝑔(𝛼𝛼) in (14) has coefficients 
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𝑐𝑐𝑘𝑘 = � 𝑎𝑎𝑚𝑚
𝑚𝑚+𝑗𝑗=𝑘𝑘

𝑏𝑏𝑗𝑗 mod 𝑝𝑝, 

  0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1. 

(15) 

An example of the field GF(32) is used to explain the 
basic operations in extended Galois fields. The irreducible 
polynomial p(x) = x2 + x + 2 is used. Table 1 presents all 
elements of GF(32) as polynomials, ordered pairs of 
coefficients, and powers of the primitive element α. 

TABLE 1 ELEMENTS OF GF(32) WITH PRIMITIVE  
POLYNOMIAL P(X) = X2 + X + 2 

№ Representation of GF(32) Elements 
As a Polynomial As an Ordered Pair As a Power of α 

0 0.α + 0 0 0 0 
1 0.α + 1 0 1 α0 
2 0.α + 2 0 2 α4 
3 1.α + 0 1 0 α1 
4 1.α + 1 1 1 α7 
5 1.α + 2 1 2 α6 
6 2.α + 0 2 0 α5 
7 2.α + 1 2 1 α2 
8 2.α + 2 2 2 α3 
The polynomial and n-tuple representations are more 

suitable for addition and subtraction operations, while the 
power of the primitive element α representation allows for 
faster computation of multiplication and division 
operations. The following formulas will be used: 

If a = αx and b = αy are two elements in GF(pn), then 
their product c is 

𝑐𝑐 = 𝑎𝑎. 𝑏𝑏 = 𝛼𝛼𝑥𝑥.𝛼𝛼𝑦𝑦 = 𝛼𝛼(𝑥𝑥+𝑦𝑦) mod (𝑝𝑝𝑛𝑛−1)  (16) 

and their quotient d is 

𝑑𝑑 =
𝑎𝑎
𝑏𝑏

=
𝛼𝛼𝑥𝑥

𝛼𝛼𝑦𝑦
= 𝛼𝛼(𝑥𝑥−𝑦𝑦) mod (𝑝𝑝𝑛𝑛−1) . 

(17) 

As a corollary of equation (17), the multiplicative 
inverse element a-1 can be determined 

𝑎𝑎−1 =
1
𝑎𝑎

=
𝛼𝛼𝑝𝑝𝑛𝑛−1

𝛼𝛼𝑥𝑥
= 𝛼𝛼(𝑝𝑝𝑛𝑛−1−𝑥𝑥) mod (𝑝𝑝𝑛𝑛−1) . 

(18) 

In Example 1 we give the examples of the arithmetic 
operations addition, subtraction, multiplication, and 
division of two elements, 2 and 8, from GF(32). 

Example 1. Addition, subtraction, multiplication, and 
division of elements 2 and 8 from GF(32). 

Addition: 2 + 8 = 2 + (2.α + 2) = 2.α + 1 = 7. 

Subtraction: 2 – 8 = 2 – 2.α – 2 = 0 – 2.α = 1.α = 3. 

Multiplication: 2.8 = α4.α3 = α7 mod 8 = α7 = 4 = 1 1. 

Division: 2/8 = α4 / α3 = α1 mod 8 = α1 = 3 = 1 0. 

Multiplicative inverse: 
2-1 = 1/α4 = α8/α4 = α4 = 2 = 0 2. 
8-1 = 1/α3 = α8/α3 = α5 = 6 = 2 0. 

As shown in Example 1, in a field with a base other 
than 2, the inverse additive elements a and -a are not 
unique. Next, we give a specific feature 1, witch from the 
non-uniqueness of the inverse elements in GF(p), p > 2. 

Specific Feature 1. In Galois Field GF(p), every 
nonzero element 𝑎𝑎 has an additive inverse element −𝑎𝑎 =
𝑝𝑝 − 𝑎𝑎. 

A. Algorithm Main Steps 
The pseudocode of the algorithm for generating all p-

ary Reed-Solomon Codes over GF(pn) is shown on Fig. 1.  

The first step of the algorithm is to construct a Galois 
field GF(p). The second step is to construct an extended 
Galois field GF(pm) by setting p(x) = 0, where p(x) is an 
irreducible polynomial of degree m in GF(p). Finding the 
polynomial p(x) of degree m is a computationally difficult 
problem. There are tables of irreducible polynomials for 
Galois fields of base 2 at various values of m. For fields 
with base p not equal to 2, sophisticated probabilistic 
algorithms are used to find these polynomials. 

Consider the second feature of the algorithm, which 
involves computing the generator (2) and parity (6) 
polynomials for GF(pm) with base p > 2. In some 
reference works, the subtraction operation in the formulas 
for computing g(x) and h(x) is replaced by addition due to 
the sameness of the addition and subtraction operations in 
GF(2m). 

algorithm p-ary Reed-Solomon Codes is 
    input: a prime number p 
           a natural number m 
    output: all pRS codes in GF(pm) and their 
parameters 
  CALL GFp  // Construction of a GF(p) 
  CALL GFpm // Construction of a GF(pm) 
  n ← pm - 1 
  for (k = 1; k < n; k++) 
  { 
    CALCULATE g(x);   //Generator polynomial 
    CALCULATE p(x);   //Parity polynomial 
    dmin ← n – k + 1; //Hamming distance 
    t ← ⌊(n – k)/2⌋;  //Number of corrected  
symbols  
    r ← k/n;         //Code Speed 
    b = t/n;         //Code Capability 
    PRINT g(x), p(x), dmin, t, r, b; 
  } 

Fig. 1. Pseudocode of the Algorithm for Generating all pRS Codes 
over GF(pn). 

Specific Feature 2. In formulas (2) and (6), 
subtraction operations must be performed due to the 
difference between addition and subtraction operations for 
fields GF(pn) with base p > 2. 

Example 2. Generate a ternary Reed-Solomon code 
over the Galois field GF(32) with a length of n = 8 and k = 
6 information symbols. 

1. Construct the GF(3) using the specified arithmetic 
operations of addition and multiplication: 

c ≡ a + b mod 3 
d ≡ a.b mod 3, 

where a, b, c, and d ∈ GF(3). 

2. Construct an extended Galois field GF(32) using the 
primitive polynomial p(x) = x2 + x + 2. To improve the 
speed of addition and subtraction operations in GF(32), 
elements of the field are represented as ordered pairs. For 
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multiplication and division operations, elements are 
represented as powers of the primitive element α (see 
Table 1). 

3. Generate (8, 6) ternary RS code: 

3.1. Calculate the generator polynomial (2): 

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼)(𝑥𝑥 − 𝛼𝛼2) = 𝑥𝑥2 − 𝛼𝛼𝑥𝑥 − 𝛼𝛼2𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − (𝛼𝛼 + 𝛼𝛼2)𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − (10 + 21)𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − 01𝑥𝑥 + 22 = 𝑥𝑥2 + 02𝑥𝑥 + 22 

3.2. Calculate the parity polynomial (6): 
ℎ(𝑥𝑥) = 
(𝑥𝑥 − 𝛼𝛼3)(𝑥𝑥 − 𝛼𝛼4)(𝑥𝑥 − 𝛼𝛼5)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1) 
= (𝑥𝑥2 + 𝛼𝛼6 − 𝛼𝛼2)(𝑥𝑥 − 𝛼𝛼5)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1) 
= (𝑥𝑥3 + 𝛼𝛼3𝑥𝑥2 + 𝛼𝛼3𝑥𝑥 + 𝛼𝛼0)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1) 
= (𝑥𝑥4 + 𝛼𝛼𝑥𝑥3 + 𝛼𝛼6𝑥𝑥2 + 𝛼𝛼2𝑥𝑥 + 𝛼𝛼2)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1) 
= (𝑥𝑥5 + 𝛼𝛼4𝑥𝑥4 + 𝛼𝛼7𝑥𝑥3 + 𝛼𝛼0𝑥𝑥2 + 𝛼𝛼7𝑥𝑥 + 𝛼𝛼5)(𝑥𝑥 − 1) 
= 𝛼𝛼0𝑥𝑥6 + 𝛼𝛼0𝑥𝑥5 + 𝛼𝛼6𝑥𝑥4 + 𝛼𝛼5𝑥𝑥3 + 𝛼𝛼1𝑥𝑥2 + 𝛼𝛼6𝑥𝑥 + 𝛼𝛼1 
= 01𝑥𝑥6 + 01𝑥𝑥5 + 12𝑥𝑥4 + 20𝑥𝑥3 + 10𝑥𝑥2 + 12𝑥𝑥 + 10 

4. The code's characteristics are calculated: 

• Minimum Hamming distance: dmin = n – k + 
1 = 8 – 6 + 1 = 3; 

• Maximum number of error-corrected 
symbols: 𝑡𝑡 = ⌊(8 − 6)/2⌋ = 1; 

• Error Correcting Code Speed: r = k/n = 
100(6/8) = 75 %; 

• Error Correcting Code Capability: b = t/n = 
100(1/8) = 12,5 %. 

B. Testing the algorithm 
The algorithm for generating p-ary Reed-Solomon 

codes at arbitrary prime p is implemented in Visual C#. It 
is tested for prime values p between 2 and 13 and all 
powers m between 2 and 8. All generated ternary RS 
codes over the field GF(32) and their parameters are given 
in Table 2. 

Table 3 shows the representation of the elements of 
the field GF(52) as polynomials, ordered pairs and powers 
of the primitive element α. The field GF(52) is constructed 
using the primitive polynomial p(x) = x2 + x + 2. Table 4 
shows the 5RS codes over the field GF(52) with even n – 
k, which are more widely used because they maximize t at 
the corresponding k. 

TABLE 2 3RS CODES OVER GF(32) 

№ g(x), h(x) n k dmin t r [%] b [%] 

1 
g(x) = 10 + 10x + 10x2 + 10x3 + 
10x4 + 10x5 + 10x6 + 10x7 

h(x) = 20 + 10x 
8 1 8 3 12,5 37,5 

2 
g(x) = 02 + 20x + 01x2 + 11x3 + 
12x4 + 21x5 + 10x6 
h(x) = 11 + 12x + 10x2 

8 2 7 3 25 37,5 

3 
g(x) = 22 + 11x + 12x2 + 22x3 + 
12x4 + 10x5 
h(x) = 01 + 01x + 21x2 + 10x3 

8 3 6 2 25 37,5 

4 

g(x) = 12 + 20x + 12x2 + 11x3 + 
10x4 
h(x) = 12 + 20x + 12x2 + 11x3 + 
10x4 

8 4 5 2 50 25 

5 g(x) = 12 + 11x + 01x2 + 10x3 
h(x) = 12 + 22x + 22x2 + 01x3 + 8 5 4 1 62,5 12,5 

№ g(x), h(x) n k dmin t r [%] b [%] 
02x4 + 10x5 

6 
g(x) = 22 + 20x + 10x2 
h(x) = 01 + 21x + 01x2 + 02x3 + 
21x4 + 10x5 + 10x6 

8 6 3 1 75 12,5 

7 
g(x) = 02 + 10x 
h(x) = 11 + 21x + 02x2 + 20x3 + 
22x4 + 12x5 + 01x6 + 10x7 

8 7 2 0 87,5 0 

It should be noted that the coefficients of the 
computed polynomials g(x) and p(x), shown in Tables 2 
and 4, start from the least significant coefficient, i.e. they 
are written in the reverse order to those in Tables 1 and 3. 
The reason for this is the generalization of the algorithm 
to generate pRS codes at different powers m of the 
extended field GF(pm). For example, if the GF(33) is used, 
then the element 5 (0.α2 + 1.α + 2) of the extended Galois 
field is represented by the 3-tuple 210 as an output of the 
proposed algorithm. 

TABLE 3 ELEMENTS OF GF(52) WITH PRIMITIVE  
POLYNOMIAL P(X) = X2 + X + 2 

№ 
As a 

Polyno
mial 

As an 
Ordered 

Pair 

As a 
Power 

of α 
№ 

As a 
Polyno

mial 

As an 
Ordered 

Pair 

As a 
Power of 

α 
0 0.α + 0 0 0 0 13 2.α + 3 2 3 α16 
1 0.α + 1 0 1 α0 14 2.α + 4 2 4 α20 
2 0.α + 2 0 2 α6 15 3.α + 0 3 0 α19 
3 0.α + 3 0 3 α18 16 3.α + 1 3 1 α8 
4 0.α + 4 0 4 α12 17 3.α + 2 3 2 α4 
5 1.α + 0 1 0 α1 18 3.α + 3 3 3 α11 
6 1.α + 1 1 1 α17 19 3.α + 4 3 4 α9 
7 1.α + 2 1 2 α14 20 4.α + 0 4 0 α13 
8 1.α + 3 1 3 α15 21 4.α + 1 4 1 α22 
9 1.α + 4 1 4 α10 22 4.α + 2 4 2 α3 

10 2.α + 0 2 0 α7 23 4.α + 3 4 3 α2 
11 2.α + 1 2 1 α21 24 4.α + 4 4 4 α5 
12 2.α + 2 2 2 α23     

TABLE 4 5RS CODES OVER GF(52) 

№ g(x), h(x) n k dmin t r 
[%] 

b 
[%] 

1 

g(x) = 04 + 20x + 01x2 + 33x3 + 44x4 
+ 24x5 + 22x6 + 14x7 + 21x8 + 30x9 + 
02x10 + 12x11 + 13x12 + 42x13 + 11x14 
+ 34x15 + 23x16 + 43x17 + 40x18 + 
03x19 + 41x20 + 32x21 + 10x22 
h(x) = 22 + 23x + 10x2 

24 2 23 11 8,33 45, 
83 

2 

g(x) = 30 + 32x + 31x2 + 11x3 + 44x4 
+ 14x5 + 43x6 + 23x7 + 04x8 + 42x9 + 
41x10 + 22x11 + 03x12 + 04x13 + 12x14 
+ 04x15 + 22x16 + 21x17 + 31x18 + 
03x19 + 10x20 
h(x) = 30 + 23x + 40x2 + 02x3 + 10x4 

24 4 21 10 16, 
66 

41, 
66 

3 

g(x) = 24 + 11x + 41x2 + 02x3 + 41x4 
+ 22x5 + 24x6 + 01x7 + 33x8 + 11x9 + 
32x10 + 33x11 + 30x12 + 03x13 + 33x14 
+ 04x15 + 12x16 + 43x17 + 10x18 
h(x) = 43 + 33x + 22x2 + 22x3 + 23x4 
+ 12x5 + 10x6 

24 6 19 9 25 37,5 

4 

g(x) = 32 + 01x + 43x2 + 34x3 + 14x4 
+ 21x5 + 03x6 + 32x7 + 33x8 + 22x9 + 
43x10 + 33x11 + 34x12 + 04x13 + 24x14 
+ 34x15 + 10x16 
42 + 11x + 22x2 + 31x3 + 10x4 + 14x5 
+ 04x6 + 21x7 + 10x8 

24 8 17 8 33, 
33 

33, 
33 

5 g(x) = 43 + 21x + 31x2 + 33x3 + 13x4 24 10 15 7 41, 29, 
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№ g(x), h(x) n k dmin t r 
[%] 

b 
[%] 

+ 22x5 + 04x6 + 32x7 + 14x8 + 11x9 + 
33x10 + 22x11 + 40x12 + 42x13 + 10x14 
h(x) = 24 + 42x + 11x2 + 23x3 + 02x4 
+ 12x5 + 32x6 + 14x7 + 42x8 + 13x9 + 
10x10 

66 16 

6 

g(x) = 20 + 21x + 32x2 + 33x3 + 11x4 
+ 21x5 + 31x6 + 01x7 + 31x8 + 42x9 + 
40x10 + 12x11 + 10x12 
h(x) = 20 + 34x + 32x2 + 22x3 + 11x4 
+ 34x5 + 31x6 + 04x7 + 31x8 + 13x9 + 
40x10 + 43x11 + 10x12 

24 12 13 6 50 25 

7 

g(x) = 02 + 21x + 01x2 + 34x3 + 03x4 
+ 22x5 + 13x6 + 23x7 + 32x8 + 30x9 + 
10x10 
h(x) = 44 + 10x + 31x2 + 01x3 + 40x4 
+ 11x5 + 12x6 + 21x7 + 41x8 + 03x9 + 
24x10 + 44x11 + 13x12 + 20x13 + 10x14 

24 14 11 5 58, 
33 

20, 
83 

8 

g(x) = 40 + 01x + 22x2 + 02x3 + 13x4 
+ 14x5 + 44x6 + 14x7 + 10x8 
h(x) = 10 + 01x + 01x2 + 41x3 + 14x4 
+ 20x5 + 24x6 + 32x7 + 24x8 + 02x9 + 
43x10 + 24x11 + 41x12 + 04x13 + 03x14 
+ 41x15 + 10x16 

24 16 9 4 66, 
66 

16, 
66 

9 

g(x) = 12 + 11x + 22x2 + 11x3 + 32x4 
+ 24x5 + 10x6 
h(x) = 31 + 22x + 41x2 + 01x3 + 14x4 
+ 44x5 + 24x6 + 03x7 + 22x8 + 22x9 + 
32x10 + 44x11 + 20x12 + 01x13 + 33x14 
+ 02x15 + 43x16 + 31x17 + 10x18 

24 18 7 3 75 12,5 

10 

g(x) = 41 + 32x + 42x2 + 33x3 + 10x4 
h(x) = 34 + 42x + 31x2 + 04x3 + 12x4 
+ 41x5 + 11x6 + 13x7 + 04x8 + 32x9 + 
34x10 + 33x11 + 24x12 + 11x13 + 12x14 
+ 43x15 + 31x16 + 34x17 + 22x18 + 
22x19 + 10x20 

24 20 5 2 83, 
33 

8, 
33 

11 

g(x) = 24 + 20x + 10x2 
h(x) = 43 + 10x + 11x2 + 01x3 + 11x4 
+ 04x5 + 02x6 + 23x7 + 30x8 + 42x9 + 
02x10 + 03x11 + 23x12 + 21x13 + 43x14 
+ 32x15 + 32x16 + 03x17 + 42x18 + 
01x19 + 21x20 + 30x21 + 10x22 

24 22 3 1 91, 
66 4,16 

CONCLUSIONS 
The article proposes an algorithm for generating  

p-ary Reed-Solomon codes and identifies two specific 
features of an algorithm for an arbitrary prime p, greater 
than 2. 

In the developed algorithm for generating p-ary Reed-
Solomon codes, the most tedious problem is that of 
constructing an extension of a Galois field GF(pm) at an 
arbitrary prime p. As p and m grow, the time to find a 
primitive polynomial p(x) with which to generate the 
extended field grows exponentially. This also increases 
the memory required to store the powers of the primitive 
element α. 

When selecting a suitable RS code, the theoretical and 
applied aspects of its characteristics must be considered. 
From a theoretical point of view, the codes are compared 
in terms of their ability to maximize the channel capacity, 
which automatically leads to a requirement for a high RS 
code rate, the signal-to-noise ratio and the number of 
errors that the code can correct and detect. From an 
application point of view, the complexity of the 
implementation, the processing delay, and the evaluation 
of the possibility of retransmitting the data packet if the 
errors cannot be corrected are considered. In this respect, 
the use of a prime number p greater than two leads to a 

reduction in the length of the RS code used to transmit the 
same amount of information while maintaining the code's 
ability to correct. 

To summarise, the proposed algorithm has a higher 
time and memory complexity in its first two steps, which 
are only executed once, compared to the original RS 
algorithm that operates at base 2. The algorithm's main 
advantage is that, by using a prime p greater than 2, it 
significantly reduces the length of the pRS code while 
maintaining the same error-correcting capability as the RS 
code with base 2. 

As future work, a speed comparison could be 
conducted on concrete computational systems between the 
proposed algorithm running on an arbitrary prime p and 
the original algorithm running with prime 2. 
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