
Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 237-243

Print ISSN 1691-5402
Online ISSN 2256-070X

 https://doi.org/10.17770/etr2024vol4.8212
© 2024 Zhaneta Savova, Rosen Bogdanov. Published by Rezekne Academy of Technologies.

This is an open access article under the Creative Commons Attribution 4.0 International License

237

Some Specific Features in the Construction of
p-ary Reed-Solomon Codes for an Arbitrary

Prime p

Zhaneta Savova
Department of Computer Systems and Technologies

National Military University
Shumen, Bulgaria

zh.savova@yahoo.com

Rosen Bogdanov
Department of Communication Networks and Systems

National Military University
Shumen, Bulgaria

r61@abv.bg

Abstract. The Reed-Solomon (RS) codes, proposed in
1960 by Irving Reed and Gustav Solomon as a subset of
error-correcting codes, have many current applications.
The most significant of which are data recovery in storage
systems, including hard drives, minidiscs, CDs, DVDs,
Google's GFS, BigTable, and RAID 6, as well as in
communication systems such as DSL, WiMAX, DVB,
ATSC, and satellite communications. Additionally, RS codes
are used as Bar codes in management and advertising
systems, such as PDF-417, MaxiCode, Datamatrix, QR
Code, and Aztec Code. Nowadays, RS codes over Galois
Fields GF(2m) with base 2 are commonly used in these
applications, with the GF(28) field being the most widely
used. This allows all 256 values of a byte to be represented
as a polynomial with 8 binary coefficients over GF(28).
Considering RS codes as cyclic codes in GF(2m) fields, as
well as the validity of mathematical dependencies in
arbitrary field GF(pm), is a motivation to verify and
generalize the idea of generating RS codes in a field with
base other prime than 2. As a result, the paper derives the
specific features of the construction of Reed-Solomon codes
by considering them as a family of codes over any field
GF(pm) whose base is a prime p other than 2. The paper also
discusses the unique properties of basic arithmetic
operations in the arbitrary field GF(pm), which arise from
the non-uniqueness of the inverse elements a and -a in a
field with base other than 2.

Keywords: BCH Codes, Error Correcting Codes, Extended
Galois Field, p-ary Reed-Solomon Codes.

I. INTRODUCTION

The Reed-Solomon (RS) codes are non-binary cyclic
error correction codes proposed by Irving Reed and
Gustav Solomon in 1960 [1]. By adding symbols to check
the data, the RS code can detect any combination of up to
a maximum of t erroneous symbols or correct up to ⌊t/2⌋

symbols. Here ⌊x⌋ denotes the largest integer less than or
equal to x. Using the RS code as an erasure correction
code, it can correct up to a maximum of t known erasures,
or it can detect and correct combinations of errors and
erasures. An advantage of RS codes is that they are
suitable for correcting burst errors because a sequence of
m + 1 bit errors can affect at most two symbols of size m.

Reed-Solomon codes are most commonly used in data
storage systems to correct packet errors caused by media
defects. The information recorded on a compact disc (CD)
is divided into segments called frames, with each frame
containing 24 information symbols. Each symbol is
represented as an element of the Galois field GF(28). The
code used to correct errors is called a Cross-Interleaved
Reed-Solomon code (CIRC) because it is obtained by a
cross-interleaving process of two shortened Reed-
Solomon codes [2], [3]. The first code C1, which uses
symbols from GF(28) as input information, is the
shortened Reed-Solomon code (32, 28). The second code
C2 is a shortened (28, 24) Reed-Solomon code again
operating in the GF(28). This sets the rate of the CIRC
code to r = 24/32 = 3/4 = 0,75. Both codes C1 and C2
have a minimum distance dmin = 5, which determines their
ability to correct up to a maximum of 2 errors per
codeword or to perform up to a maximum of 5 erasure
corrections.

Digital Video Discs (DVDs) use a similar error
correction scheme called Reed-Solomon Product Code
(RS-PC) [4]. In it, the two truncated Reed-Solomon codes
C1 and C2 are relatively longer than those in CIRC, being
(208, 192) and (182, 172) respectively. In addition, the
RS-PC rate is much higher
r = 172.192/(182.208) = 0.872. Blu-ray Discs use an error
correction system with an efficient way of indicating
packet errors called Picket Code (PC). Pickets are special

https://doi.org/10.17770/etr2024vol4.8212
https://creativecommons.org/licenses/by/4.0/
mailto:zh.savova@yahoo.com
mailto:r61@abv.bg

Zhaneta Savova. et al. Some Specific Features in the Construction of p-ary Reed-Solomon Codes for an Arbitrary
Prime p

238

columns inserted at regular intervals between the columns
of main data. The underlying data is protected by an
efficient Reed-Solomon code. The pickets are protected
by a second, independent and extremely powerful Reed-
Solomon code. During decoding, the pickets are first
corrected, and the information obtained can be used to
calculate the location of possible errors in decoding the
underlying data.

As a result of the use of error correction codes in data
storage systems, the maximum packet error length is
about 500 bytes for the CIRC code, 2200 bytes for the
RS-PC code, while for the PC it is about 9900 bytes. The
DVD RS-PC code can reduce the random input error from
2.10-2 to a data error of 10-15, which is about 10 times
better than the CD [4]. Under the same conditions, the
possible error in the data on an optical disc using the
Pickett code is 1,5.10-18, while on an optical disc using
RS-PC it is 5,7.10-7 [5].

Most two-dimensional barcodes, such as QR Code,
PDF-417, MaxiCode, Aztec Code, etc., use Reed-
Solomon codes to correct errors if part of the barcode is
damaged [6]. Modern data transmission systems used in
digital television, satellite space and wireless
communications use specialized concatenated codes, one
of which is the Reed-Solomon code [7], [8].

Erasure-coded storage using Reed-Solomon codes is
now widely used in large, distributed storage systems,
including Google File System (GFS), Facebook Hadoop
Distributed File System (HDFS), Windows Azure storage,
and data centers [9], [10], [11].

Nowadays, multi-level signals and sequences are
emerging as a prominent feature in today's high-speed
communication systems. New methods such as the
PWAM signaling scheme [12], 4D PAM-7 [13], and
Automotive Ethernet [14] are used in in-vehicle
networking. These methods utilize seven-level pulse
amplitude modulation (PAM-7), Four-Dimensional Five
Level Pulse Amplitude Modulation (4D-PAM-5), and
PAM-3 symbols to improve data transfer rates compared
to wire infrastructures.

Real-world applications of Reed-Solomon codes
mostly use a Galois field representation of GF(28)
symbols [15]. In many research papers, the theoretical
construction of Reed-Solomon codes is presented over an
arbitrary field GF(q) of q elements, where q is a power of
a prime number. Despite this theoretical representation,
the examples explaining Reed-Solomon codes are over
fields of base 2. Therefore, to ensure the error correction
features of new multi-level sequences, advanced methods
are required to generate not only binary but also
nonbinary symbols. The aim of this article is to provide a
detailed discussion on constructing Reed-Solomon codes
as a family of codes over an arbitrary Galois field GF(pn).
It also highlights the unique characteristics of the codes
when operating over finite fields of base other prime than
2.

II. MATERIALS AND METHODS

There are two methods for the construction of Reed-
Solomon codes. The first method views the codeword as a
sequence of values proposed in Reed and Solomon's

original 1960 paper “Polynomial codes over certain finite
fields” [1]. The second method views Reed-Solomon
codes as Bose-Chaudhuri-Hocquenghem (BCH) codes
[16], where the codeword is represented as a sequence of
coefficients.

A. Original Presentation of Reed-Solomon Codes
Reed and Solomon consider a field K of degree n over

a field Z2 of 2 elements [1]. They propose a code E by
which each k-tuple (a0, a1, …, ak-1) of K is matched by a
2n-tuple (m(0), m(α), m(α2), …, m(1)) of K. Here m(x) is a
polynomial of degree k – 1

𝑚𝑚(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1, (1)

where ai, ∈ K, k < 2n, and α is the primitive n−th unit root
in K. Here, the k-tuple represents the encoded message
and the and the 2n-tuple represents the transmitted
message. The authors prove that this code corrects (2n –
k)/2 or (2n – k – 1)/2 symbols, depending on whether k is
an even or odd number.

B. BCH Representation of Reed-Solomon Codes
Instead of sending al`l values of message polynomial

m(x) (1), the transmitter computes another polynomial s(x)
of degree at most n – 1 (where n = q – 1) and sends the n
coefficients of this polynomial. The polynomial s(x) is
obtained by multiplying the message polynomial m(x) of
degree at most k – 1 by the generator polynomial g(x) of
degree n – k, which is used in the transmitter and receiver
of the coding system.

The generating polynomial g(x) is defined as a
polynomial whose roots are the elements α, α2, …, αn – k
of the field K. Thus, g(x) can be expressed as:

g(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼)(𝑥𝑥 − 𝛼𝛼2) … (𝑥𝑥 − 𝛼𝛼𝑛𝑛−𝑘𝑘) =
= 𝑔𝑔0 + 𝑔𝑔1𝑥𝑥 + ⋯
+ 𝑔𝑔𝑛𝑛−𝑘𝑘−1𝑥𝑥𝑛𝑛−𝑘𝑘−1 + 𝑥𝑥𝑛𝑛−𝑘𝑘 .

(2)

The transmitter sends n = q – 1 polynomial
coefficients

𝑠𝑠(𝑥𝑥) = 𝑚𝑚(𝑥𝑥)𝑔𝑔(𝑥𝑥). (3)

The receiver considers the received symbols as
coefficients of the polynomial r(x). If there are no
transmission errors (r(x) = s(x)), then by dividing the
polynomial r(x) by g(x) the message polynomial m(x) can
be obtained

𝑟𝑟(𝑥𝑥)
g(𝑥𝑥) = 𝑚𝑚(𝑥𝑥).

(4)

If transmission errors occur, the division will produce
a remainder e(x) with a lower degree than that of g(x),
indicating the presence of errors, i.e.

𝑟𝑟(𝑥𝑥) = 𝑚𝑚(𝑥𝑥). g(𝑥𝑥) + 𝑒𝑒(𝑥𝑥). (5)

If there is an error e(x) ≠ 0, the receiver can calculate
r(x) for all roots of g(x). This will result in a system of
equations that will determine which coefficients have
errors and the values of those errors. The Berlekamp-
Messy algorithm [17] or extended Euclidean algorithm
[18], and the parity polynomial

ℎ(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼0)(𝑥𝑥 − 𝛼𝛼𝑛𝑛−𝑘𝑘+1) … (𝑥𝑥 − 𝛼𝛼𝑛𝑛−1) (6)

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 237-243

239

= ℎ0 + ℎ1𝑥𝑥 + ⋯+ ℎ𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝑥𝑥𝑘𝑘

are used to accomplish this.

C. Key Features of Reed-Solomon Codes
Reed-Solomon codes are linear block cyclic (n, k)

codes of length n and size k. The minimum Hamming
distance of the RS (n, k) code is

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛 − 𝑘𝑘 + 1. (7)

For an arbitrary systematic (n, k) code is satisfied

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛 − 𝑘𝑘 + 1, (8)

since in any (n, k) code, a non-zero codeword with a
weight of at most n – k + 1 can always be created by
resetting all but one of the k information digits.

The code executed with equality at (8) is called
Maximum Distance Separable (MDS). As shown in (7),
all RS codes are MDS. MDS codes have special
properties because they have the maximum possible dmin
at their length n and size k. For instance, any set of k
columns of their generator matrix G are linearly
independent, meaning any k positions in the block can be
used as information. Additionally, the weight distribution
of MDS codes can be easily determined.

The RS code's correction capabilities are determined
by its minimum distance, dmin. It can correct up to t = (n –
k)/2 erroneous symbols. If the error locations are known
in advance, as defined by the erasure term, the RS code
can correct up to a maximum of 2t erasures. The RS code
is capable of correcting any combination of errors and
erasures, provided that they fall within its correction
capabilities

2𝑒𝑒 + 𝑠𝑠 ≤ 𝑛𝑛 − 𝑘𝑘, (9)

where e is the number of errors and s is the number of
erasures in the block.

RS codes cannot be binary since the length n of the RS
code is smaller than the size of the encoding alphabet. RS
codes over GF(2m) are of particular interest. For instance,
for m = 8, RS codes can have a length of n = 28 – 1 = 255
symbols, each 8 bits long.

Since GF(2m) is a vector space of size m over GF(2),
each element of GF(2m) can be represented by m bits,
which are coefficients in the linear combination of
selected basis vectors. The element 0 is represented by a
zero binary m-tuple (0, 0, ..., 0), regardless of the chosen
basis elements. When using this representation, the (n, k)
code over GF(2m) becomes a binary (mn, mk) code with a
minimum distance mind ′ at least as large as the minimum
distance of the code it forms. This is because each
nonzero element of GF(2m) has at least one '1' in its binary
m-tuple representation. The case where mind ′ > dmin is also
possible. Therefore, equivalent binary codes are useful for
their burst error correction property. Each burst of errors
(t – 1) m + 1 or fewer consecutive bits will appear as at
most t errors in the GF(2m) symbols. Thus, a decoding
algorithm for GF(2m) code that corrects all combinations
of t or fewer errors will also automatically correct all
bursts of consecutive errors of length less than or equal to
(t – 1) m + 1 bits. Reed-Solomon codes are ideal for

correcting burst errors due to their largest possible dmin,
given their length n = 2m – 1 (or a divisor of it) and size k
(1 ≤ k < n).

Next, we present an algorithm for generating a family
of RS codes over an arbitrary field GF(pm), where p is an
arbitrary prime number. For brevity, these codes will be
referred to as p-ary Reed-Solomon codes or pRS codes.

III. RESULTS AND DISCUSSION

This section provides the mathematical background of
an extended Galois field GF(pn) and the main steps of the
proposed algorithm. It also specifies the algorithm's
features for prime p greater than 2 and give some results
from algorithm’s testing.

A. Mathematical Background of an Extended
Galois Field GF(pn)
The field GF(q) is an extension of the Galois Field

GF(p) with a power of n if the order of GF(q) can be
expressed as a power of the prime p (q = pn), where n is a
positive (n ≥ 2). In these cases, we use the notation
Extended Galois Field GF(pn).

To create an Extended Galois Field GF(pn), select an
irreducible polynomial p(x) over GF(p) [19]. Let α be a
root of p(x) such that p(α) = 0. The elements of the field
GF(pn) are polynomials of degree n – 1, which belong to
the ring GF(p)[x] and have coefficients in GF(p)

𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛) = {𝑎𝑎𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝛼𝛼 + 𝑎𝑎0 | 𝑎𝑎𝑖𝑖
∈ 𝐺𝐺𝐺𝐺(𝑝𝑝)}.

(10)

Arithmetic in GF(pn) involves polynomial arithmetic
modulo the irreducible polynomial p(x). The two main
algebraic operations are addition (13) and multiplication
(14), which are defined for two elements f(α) (11) and
g(α) (12) of GF(pn).

𝑓𝑓(𝛼𝛼) = �𝑎𝑎𝑖𝑖𝛼𝛼𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0

=

= 𝑎𝑎𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝛼𝛼 + 𝑎𝑎0

(11)

g(𝛼𝛼) = �𝑏𝑏𝑖𝑖𝛼𝛼𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0

=

= 𝑏𝑏𝑛𝑛−1𝛼𝛼𝑛𝑛−1 + ⋯+ 𝑏𝑏1𝛼𝛼 + 𝑏𝑏0

(12)

Addition in GF(pn):

�𝑓𝑓(𝛼𝛼) + g(𝛼𝛼)� =

= �[(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖) mod 𝑝𝑝].𝛼𝛼𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛)
𝑛𝑛−1

𝑖𝑖=0

.

(13)

Multiplication in GF(pn):

𝑟𝑟(𝛼𝛼) = 𝑓𝑓(𝛼𝛼).𝑔𝑔(𝛼𝛼) mod 𝑝𝑝(𝛼𝛼)

= � � 𝑐𝑐𝑘𝑘𝛼𝛼𝑖𝑖
2(𝑛𝑛−1)

𝑘𝑘=0

� mod 𝑝𝑝(𝛼𝛼).

(14)

The polynomial resulting from the multiplication of
𝑓𝑓(𝛼𝛼).𝑔𝑔(𝛼𝛼) in (14) has coefficients

Zhaneta Savova. et al. Some Specific Features in the Construction of p-ary Reed-Solomon Codes for an Arbitrary
Prime p

240

𝑐𝑐𝑘𝑘 = � 𝑎𝑎𝑖𝑖
𝑖𝑖+𝑗𝑗=𝑘𝑘

𝑏𝑏𝑗𝑗 mod 𝑝𝑝,

 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1.

(15)

An example of the field GF(32) is used to explain the
basic operations in extended Galois fields. The irreducible
polynomial p(x) = x2 + x + 2 is used. Table 1 presents all
elements of GF(32) as polynomials, ordered pairs of
coefficients, and powers of the primitive element α.

TABLE 1 ELEMENTS OF GF(32) WITH PRIMITIVE
POLYNOMIAL P(X) = X2 + X + 2

№ Representation of GF(32) Elements
As a Polynomial As an Ordered Pair As a Power of α

0 0.α + 0 0 0 0
1 0.α + 1 0 1 α0
2 0.α + 2 0 2 α4
3 1.α + 0 1 0 α1
4 1.α + 1 1 1 α7
5 1.α + 2 1 2 α6
6 2.α + 0 2 0 α5
7 2.α + 1 2 1 α2
8 2.α + 2 2 2 α3
The polynomial and n-tuple representations are more

suitable for addition and subtraction operations, while the
power of the primitive element α representation allows for
faster computation of multiplication and division
operations. The following formulas will be used:

If a = αx and b = αy are two elements in GF(pn), then
their product c is

𝑐𝑐 = 𝑎𝑎. 𝑏𝑏 = 𝛼𝛼𝑥𝑥.𝛼𝛼𝑦𝑦 = 𝛼𝛼(𝑥𝑥+𝑦𝑦) mod (𝑝𝑝𝑛𝑛−1) (16)

and their quotient d is

𝑑𝑑 =
𝑎𝑎
𝑏𝑏

=
𝛼𝛼𝑥𝑥

𝛼𝛼𝑦𝑦
= 𝛼𝛼(𝑥𝑥−𝑦𝑦) mod (𝑝𝑝𝑛𝑛−1) .

(17)

As a corollary of equation (17), the multiplicative
inverse element a-1 can be determined

𝑎𝑎−1 =
1
𝑎𝑎

=
𝛼𝛼𝑝𝑝𝑛𝑛−1

𝛼𝛼𝑥𝑥
= 𝛼𝛼(𝑝𝑝𝑛𝑛−1−𝑥𝑥) mod (𝑝𝑝𝑛𝑛−1) .

(18)

In Example 1 we give the examples of the arithmetic
operations addition, subtraction, multiplication, and
division of two elements, 2 and 8, from GF(32).

Example 1. Addition, subtraction, multiplication, and
division of elements 2 and 8 from GF(32).

Addition: 2 + 8 = 2 + (2.α + 2) = 2.α + 1 = 7.

Subtraction: 2 – 8 = 2 – 2.α – 2 = 0 – 2.α = 1.α = 3.

Multiplication: 2.8 = α4.α3 = α7 mod 8 = α7 = 4 = 1 1.

Division: 2/8 = α4 / α3 = α1 mod 8 = α1 = 3 = 1 0.

Multiplicative inverse:
2-1 = 1/α4 = α8/α4 = α4 = 2 = 0 2.
8-1 = 1/α3 = α8/α3 = α5 = 6 = 2 0.

As shown in Example 1, in a field with a base other
than 2, the inverse additive elements a and -a are not
unique. Next, we give a specific feature 1, witch from the
non-uniqueness of the inverse elements in GF(p), p > 2.

Specific Feature 1. In Galois Field GF(p), every
nonzero element 𝑎𝑎 has an additive inverse element −𝑎𝑎 =
𝑝𝑝 − 𝑎𝑎.

A. Algorithm Main Steps
The pseudocode of the algorithm for generating all p-

ary Reed-Solomon Codes over GF(pn) is shown on Fig. 1.

The first step of the algorithm is to construct a Galois
field GF(p). The second step is to construct an extended
Galois field GF(pm) by setting p(x) = 0, where p(x) is an
irreducible polynomial of degree m in GF(p). Finding the
polynomial p(x) of degree m is a computationally difficult
problem. There are tables of irreducible polynomials for
Galois fields of base 2 at various values of m. For fields
with base p not equal to 2, sophisticated probabilistic
algorithms are used to find these polynomials.

Consider the second feature of the algorithm, which
involves computing the generator (2) and parity (6)
polynomials for GF(pm) with base p > 2. In some
reference works, the subtraction operation in the formulas
for computing g(x) and h(x) is replaced by addition due to
the sameness of the addition and subtraction operations in
GF(2m).

algorithm p-ary Reed-Solomon Codes is
 input: a prime number p
 a natural number m
 output: all pRS codes in GF(pm) and their
parameters
 CALL GFp // Construction of a GF(p)
 CALL GFpm // Construction of a GF(pm)
 n ← pm - 1
 for (k = 1; k < n; k++)
 {
 CALCULATE g(x); //Generator polynomial
 CALCULATE p(x); //Parity polynomial
 dmin ← n – k + 1; //Hamming distance
 t ← ⌊(n – k)/2⌋; //Number of corrected
symbols
 r ← k/n; //Code Speed
 b = t/n; //Code Capability
 PRINT g(x), p(x), dmin, t, r, b;
 }

Fig. 1. Pseudocode of the Algorithm for Generating all pRS Codes
over GF(pn).

Specific Feature 2. In formulas (2) and (6),
subtraction operations must be performed due to the
difference between addition and subtraction operations for
fields GF(pn) with base p > 2.

Example 2. Generate a ternary Reed-Solomon code
over the Galois field GF(32) with a length of n = 8 and k =
6 information symbols.

1. Construct the GF(3) using the specified arithmetic
operations of addition and multiplication:

c ≡ a + b mod 3
d ≡ a.b mod 3,

where a, b, c, and d ∈ GF(3).

2. Construct an extended Galois field GF(32) using the
primitive polynomial p(x) = x2 + x + 2. To improve the
speed of addition and subtraction operations in GF(32),
elements of the field are represented as ordered pairs. For

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 237-243

241

multiplication and division operations, elements are
represented as powers of the primitive element α (see
Table 1).

3. Generate (8, 6) ternary RS code:

3.1. Calculate the generator polynomial (2):

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼)(𝑥𝑥 − 𝛼𝛼2) = 𝑥𝑥2 − 𝛼𝛼𝛼𝛼 − 𝛼𝛼2𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − (𝛼𝛼 + 𝛼𝛼2)𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − (10 + 21)𝑥𝑥 + 𝛼𝛼3
= 𝑥𝑥2 − 01𝑥𝑥 + 22 = 𝑥𝑥2 + 02𝑥𝑥 + 22

3.2. Calculate the parity polynomial (6):
ℎ(𝑥𝑥) =
(𝑥𝑥 − 𝛼𝛼3)(𝑥𝑥 − 𝛼𝛼4)(𝑥𝑥 − 𝛼𝛼5)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1)
= (𝑥𝑥2 + 𝛼𝛼6 − 𝛼𝛼2)(𝑥𝑥 − 𝛼𝛼5)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1)
= (𝑥𝑥3 + 𝛼𝛼3𝑥𝑥2 + 𝛼𝛼3𝑥𝑥 + 𝛼𝛼0)(𝑥𝑥 − 𝛼𝛼6)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1)
= (𝑥𝑥4 + 𝛼𝛼𝑥𝑥3 + 𝛼𝛼6𝑥𝑥2 + 𝛼𝛼2𝑥𝑥 + 𝛼𝛼2)(𝑥𝑥 − 𝛼𝛼7)(𝑥𝑥 − 1)
= (𝑥𝑥5 + 𝛼𝛼4𝑥𝑥4 + 𝛼𝛼7𝑥𝑥3 + 𝛼𝛼0𝑥𝑥2 + 𝛼𝛼7𝑥𝑥 + 𝛼𝛼5)(𝑥𝑥 − 1)
= 𝛼𝛼0𝑥𝑥6 + 𝛼𝛼0𝑥𝑥5 + 𝛼𝛼6𝑥𝑥4 + 𝛼𝛼5𝑥𝑥3 + 𝛼𝛼1𝑥𝑥2 + 𝛼𝛼6𝑥𝑥 + 𝛼𝛼1
= 01𝑥𝑥6 + 01𝑥𝑥5 + 12𝑥𝑥4 + 20𝑥𝑥3 + 10𝑥𝑥2 + 12𝑥𝑥 + 10

4. The code's characteristics are calculated:

• Minimum Hamming distance: dmin = n – k +
1 = 8 – 6 + 1 = 3;

• Maximum number of error-corrected
symbols: 𝑡𝑡 = ⌊(8 − 6)/2⌋ = 1;

• Error Correcting Code Speed: r = k/n =
100(6/8) = 75 %;

• Error Correcting Code Capability: b = t/n =
100(1/8) = 12,5 %.

B. Testing the algorithm
The algorithm for generating p-ary Reed-Solomon

codes at arbitrary prime p is implemented in Visual C#. It
is tested for prime values p between 2 and 13 and all
powers m between 2 and 8. All generated ternary RS
codes over the field GF(32) and their parameters are given
in Table 2.

Table 3 shows the representation of the elements of
the field GF(52) as polynomials, ordered pairs and powers
of the primitive element α. The field GF(52) is constructed
using the primitive polynomial p(x) = x2 + x + 2. Table 4
shows the 5RS codes over the field GF(52) with even n –
k, which are more widely used because they maximize t at
the corresponding k.

TABLE 2 3RS CODES OVER GF(32)

№ g(x), h(x) n k dmin t r [%] b [%]

1
g(x) = 10 + 10x + 10x2 + 10x3 +
10x4 + 10x5 + 10x6 + 10x7

h(x) = 20 + 10x
8 1 8 3 12,5 37,5

2
g(x) = 02 + 20x + 01x2 + 11x3 +
12x4 + 21x5 + 10x6
h(x) = 11 + 12x + 10x2

8 2 7 3 25 37,5

3
g(x) = 22 + 11x + 12x2 + 22x3 +
12x4 + 10x5
h(x) = 01 + 01x + 21x2 + 10x3

8 3 6 2 25 37,5

4

g(x) = 12 + 20x + 12x2 + 11x3 +
10x4
h(x) = 12 + 20x + 12x2 + 11x3 +
10x4

8 4 5 2 50 25

5 g(x) = 12 + 11x + 01x2 + 10x3
h(x) = 12 + 22x + 22x2 + 01x3 + 8 5 4 1 62,5 12,5

№ g(x), h(x) n k dmin t r [%] b [%]
02x4 + 10x5

6
g(x) = 22 + 20x + 10x2
h(x) = 01 + 21x + 01x2 + 02x3 +
21x4 + 10x5 + 10x6

8 6 3 1 75 12,5

7
g(x) = 02 + 10x
h(x) = 11 + 21x + 02x2 + 20x3 +
22x4 + 12x5 + 01x6 + 10x7

8 7 2 0 87,5 0

It should be noted that the coefficients of the
computed polynomials g(x) and p(x), shown in Tables 2
and 4, start from the least significant coefficient, i.e. they
are written in the reverse order to those in Tables 1 and 3.
The reason for this is the generalization of the algorithm
to generate pRS codes at different powers m of the
extended field GF(pm). For example, if the GF(33) is used,
then the element 5 (0.α2 + 1.α + 2) of the extended Galois
field is represented by the 3-tuple 210 as an output of the
proposed algorithm.

TABLE 3 ELEMENTS OF GF(52) WITH PRIMITIVE
POLYNOMIAL P(X) = X2 + X + 2

№
As a

Polyno
mial

As an
Ordered

Pair

As a
Power

of α
№

As a
Polyno

mial

As an
Ordered

Pair

As a
Power of

α
0 0.α + 0 0 0 0 13 2.α + 3 2 3 α16
1 0.α + 1 0 1 α0 14 2.α + 4 2 4 α20
2 0.α + 2 0 2 α6 15 3.α + 0 3 0 α19
3 0.α + 3 0 3 α18 16 3.α + 1 3 1 α8
4 0.α + 4 0 4 α12 17 3.α + 2 3 2 α4
5 1.α + 0 1 0 α1 18 3.α + 3 3 3 α11
6 1.α + 1 1 1 α17 19 3.α + 4 3 4 α9
7 1.α + 2 1 2 α14 20 4.α + 0 4 0 α13
8 1.α + 3 1 3 α15 21 4.α + 1 4 1 α22
9 1.α + 4 1 4 α10 22 4.α + 2 4 2 α3

10 2.α + 0 2 0 α7 23 4.α + 3 4 3 α2
11 2.α + 1 2 1 α21 24 4.α + 4 4 4 α5
12 2.α + 2 2 2 α23

TABLE 4 5RS CODES OVER GF(52)

№ g(x), h(x) n k dmin t r
[%]

b
[%]

1

g(x) = 04 + 20x + 01x2 + 33x3 + 44x4
+ 24x5 + 22x6 + 14x7 + 21x8 + 30x9 +
02x10 + 12x11 + 13x12 + 42x13 + 11x14
+ 34x15 + 23x16 + 43x17 + 40x18 +
03x19 + 41x20 + 32x21 + 10x22
h(x) = 22 + 23x + 10x2

24 2 23 11 8,33 45,
83

2

g(x) = 30 + 32x + 31x2 + 11x3 + 44x4
+ 14x5 + 43x6 + 23x7 + 04x8 + 42x9 +
41x10 + 22x11 + 03x12 + 04x13 + 12x14
+ 04x15 + 22x16 + 21x17 + 31x18 +
03x19 + 10x20
h(x) = 30 + 23x + 40x2 + 02x3 + 10x4

24 4 21 10 16,
66

41,
66

3

g(x) = 24 + 11x + 41x2 + 02x3 + 41x4
+ 22x5 + 24x6 + 01x7 + 33x8 + 11x9 +
32x10 + 33x11 + 30x12 + 03x13 + 33x14
+ 04x15 + 12x16 + 43x17 + 10x18
h(x) = 43 + 33x + 22x2 + 22x3 + 23x4
+ 12x5 + 10x6

24 6 19 9 25 37,5

4

g(x) = 32 + 01x + 43x2 + 34x3 + 14x4
+ 21x5 + 03x6 + 32x7 + 33x8 + 22x9 +
43x10 + 33x11 + 34x12 + 04x13 + 24x14
+ 34x15 + 10x16
42 + 11x + 22x2 + 31x3 + 10x4 + 14x5
+ 04x6 + 21x7 + 10x8

24 8 17 8 33,
33

33,
33

5 g(x) = 43 + 21x + 31x2 + 33x3 + 13x4 24 10 15 7 41, 29,

Zhaneta Savova. et al. Some Specific Features in the Construction of p-ary Reed-Solomon Codes for an Arbitrary
Prime p

242

№ g(x), h(x) n k dmin t r
[%]

b
[%]

+ 22x5 + 04x6 + 32x7 + 14x8 + 11x9 +
33x10 + 22x11 + 40x12 + 42x13 + 10x14
h(x) = 24 + 42x + 11x2 + 23x3 + 02x4
+ 12x5 + 32x6 + 14x7 + 42x8 + 13x9 +
10x10

66 16

6

g(x) = 20 + 21x + 32x2 + 33x3 + 11x4
+ 21x5 + 31x6 + 01x7 + 31x8 + 42x9 +
40x10 + 12x11 + 10x12
h(x) = 20 + 34x + 32x2 + 22x3 + 11x4
+ 34x5 + 31x6 + 04x7 + 31x8 + 13x9 +
40x10 + 43x11 + 10x12

24 12 13 6 50 25

7

g(x) = 02 + 21x + 01x2 + 34x3 + 03x4
+ 22x5 + 13x6 + 23x7 + 32x8 + 30x9 +
10x10
h(x) = 44 + 10x + 31x2 + 01x3 + 40x4
+ 11x5 + 12x6 + 21x7 + 41x8 + 03x9 +
24x10 + 44x11 + 13x12 + 20x13 + 10x14

24 14 11 5 58,
33

20,
83

8

g(x) = 40 + 01x + 22x2 + 02x3 + 13x4
+ 14x5 + 44x6 + 14x7 + 10x8
h(x) = 10 + 01x + 01x2 + 41x3 + 14x4
+ 20x5 + 24x6 + 32x7 + 24x8 + 02x9 +
43x10 + 24x11 + 41x12 + 04x13 + 03x14
+ 41x15 + 10x16

24 16 9 4 66,
66

16,
66

9

g(x) = 12 + 11x + 22x2 + 11x3 + 32x4
+ 24x5 + 10x6
h(x) = 31 + 22x + 41x2 + 01x3 + 14x4
+ 44x5 + 24x6 + 03x7 + 22x8 + 22x9 +
32x10 + 44x11 + 20x12 + 01x13 + 33x14
+ 02x15 + 43x16 + 31x17 + 10x18

24 18 7 3 75 12,5

10

g(x) = 41 + 32x + 42x2 + 33x3 + 10x4
h(x) = 34 + 42x + 31x2 + 04x3 + 12x4
+ 41x5 + 11x6 + 13x7 + 04x8 + 32x9 +
34x10 + 33x11 + 24x12 + 11x13 + 12x14
+ 43x15 + 31x16 + 34x17 + 22x18 +
22x19 + 10x20

24 20 5 2 83,
33

8,
33

11

g(x) = 24 + 20x + 10x2
h(x) = 43 + 10x + 11x2 + 01x3 + 11x4
+ 04x5 + 02x6 + 23x7 + 30x8 + 42x9 +
02x10 + 03x11 + 23x12 + 21x13 + 43x14
+ 32x15 + 32x16 + 03x17 + 42x18 +
01x19 + 21x20 + 30x21 + 10x22

24 22 3 1 91,
66 4,16

CONCLUSIONS
The article proposes an algorithm for generating

p-ary Reed-Solomon codes and identifies two specific
features of an algorithm for an arbitrary prime p, greater
than 2.

In the developed algorithm for generating p-ary Reed-
Solomon codes, the most tedious problem is that of
constructing an extension of a Galois field GF(pm) at an
arbitrary prime p. As p and m grow, the time to find a
primitive polynomial p(x) with which to generate the
extended field grows exponentially. This also increases
the memory required to store the powers of the primitive
element α.

When selecting a suitable RS code, the theoretical and
applied aspects of its characteristics must be considered.
From a theoretical point of view, the codes are compared
in terms of their ability to maximize the channel capacity,
which automatically leads to a requirement for a high RS
code rate, the signal-to-noise ratio and the number of
errors that the code can correct and detect. From an
application point of view, the complexity of the
implementation, the processing delay, and the evaluation
of the possibility of retransmitting the data packet if the
errors cannot be corrected are considered. In this respect,
the use of a prime number p greater than two leads to a

reduction in the length of the RS code used to transmit the
same amount of information while maintaining the code's
ability to correct.

To summarise, the proposed algorithm has a higher
time and memory complexity in its first two steps, which
are only executed once, compared to the original RS
algorithm that operates at base 2. The algorithm's main
advantage is that, by using a prime p greater than 2, it
significantly reduces the length of the pRS code while
maintaining the same error-correcting capability as the RS
code with base 2.

As future work, a speed comparison could be
conducted on concrete computational systems between the
proposed algorithm running on an arbitrary prime p and
the original algorithm running with prime 2.

ACKNOWLEDGMENTS:
The article was prepared with the financial support of

the National Scientific Program “Security and Defence”,
funded by the Ministry of Education and Science of the
Republic of Bulgaria, in implementation of Decision №
731 of 21.10.2021 of the Council of Ministers of the
Republic of Bulgaria.

The authors would like to thank the reviewers for their
helpful comments.

REFERENCES
[1] I. S. Reed and G. Solomon, “Polynomial codes over certain finite

fields,” Journal of the Society for Industrial & Applied
Mathematics 8, No. 2, pp. 300-304, 1960.

[2] H. Hoeve, J. Timmermans and L. Vries, “3.4 Error Correction and
Concealment in Compact Disc Systems, ” in Origins and
Successors of the Compact Disc, Contributions of Philips to
Optical Storage: Springer Link, 2009, pp. 82.

[3] J. D. Key, “Some error-correcting codes and their applications, ”
in Applied Mathematical Modeling: A Multidisciplinary
Approach, Chapman & Hall/CRC Press, 1999.

[4] H. Chang, C. Shung and C. Lee, “A Reed–Solomon Product-Code
(RS-PC) Decoder Chip for DVD Applications, ” IEEE Journal of
Solid-State Circuits, Vol. 36, No. 2, pp. 229-238, February 2001.

[5] X. Liu, H. Jia and C. Ma. “Error-Correction codes For Optical
Disc Storage, ” in Advances in Optical Data Storage Technology,
Proceedings of SPIE Vol. 5643, pp. 342-347, 2005.

[6] J. A. Lin and C. S. Fuh, “2D Barcode Image Decoding, ” in
Mathematical Problems in Engineering, Article ID 848276, 10
pages, 2013. https://doi.org/10.1155/2013/848276 .

[7] A. J. McAuley, “Reliable broadband communication using a burst
erasure correcting code. ” in Proceedings of the ACM symposium
on Communications architectures & protocols, pp. 297-306,
ACM, 1990, https://dl.acm.org/doi/pdf/10.1145/99508.99566 .

[8] H. -C. Lee, J. -H. Wu, C. -H. Wang and Y. -L. Ueng, "A Graph-
Based Soft-Decision Decoding Scheme for Reed-Solomon
Codes," in IEEE Journal on Selected Areas in Information Theory,
vol. 4, pp. 420-433, 2023,
https://doi.org/10.1109/JSAIT.2023.3315453 .

[9] Y.Chen, “Thermal Management and Data Archiving in Data
Centers,” Ph.D. thesis, Auburn University, Auburn, Alabama,
2016.

[10] T. N. Hewage, M. N. Halgamuge, A. Syed, and G. Ekici, “Big
data techniques of Google, Amazon, Facebook and Twitter. ” in
Journal of Communications Vol. 13, No. 2, pp. 94-100, February
2018.

[11] A. Chiniah and A.Mungur, “On the Adoption of Erasure Code for
Cloud Storage by Major Distributed Storage Systems,” in EAI
Endorsed Transactions on Cloud Systems, 7(21), e1-e11, 2022.

[12] H.-U. Kim and J.-K. Kang, “High-speed Serial Interface using
PWAM Signaling Scheme,” in 19th International SoC Design

https://doi.org/10.1155/2013/848276%20%5b80
https://dl.acm.org/doi/pdf/10.1145/99508.99566
https://doi.org/10.1109/JSAIT.2023.3315453

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 15th International Scientific and Practical Conference. Volume IV, 237-243

243

Conference (ISOCC), Gangneungsi, Korea, pp. 255-256, 2022,
https://doi.org/10.1109/ISOCC56007.2022.10031330 .

[13] N. Stojanović, C. Prodaniuc, Z. Liang, J. Wei, S. Calabró, T.
Rahman and C. Xie, “4D PAM-7 Trellis Coded Modulation for
Data Centers,” in IEEE Photonics Technology Letters, Vol. 31,
No. 5, pp. 369-372, 1 March 2019,
https://doi.org/10.1109/LPT.2019.2895686 .

[14] K. Matheus and T. Königseder, Automotive Ethernet. Cambridge
University Press, 2021.

[15] S. Nabipour and M. Gholizade, Arithmetic Operators over Finite
Field GF (2m) in BCH and Reed-Solomon Codes, arXiv preprint
arXiv:2310.12319. 2023, [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/2310/2310.12319.pdf.
[Accessed: Jan. 7, 2024].

[16] R. C. Bose and D.K. Ray-Chaudhuri. “On a class of error
correcting binary group codes,” in Information and Control,
Volume 3, Issue 1, pp. 68–79, March 1960.

[17] N.Atti, G. Diaz–Toca and H. Lombardi, The Berlekamp-Massey
Algorithm revisited, in Applicable Algebra in Engineering,
Communication and Computing 17(1), pp. 75–82, 2006,
https://doi.org/10.1007/s00200-005-0190-z .

[18] J. A. M.Naranjo, J. A. López-Ramos and L. G. Casado,
“Applications of the extended Euclidean algorithm to privacy and
secure communications, ” in Proceedings of the 10th International
Conference on Computational and Mathematical Methods in
Science and Engineering, CMMSE 2010, pp. 27–30, June 2010.

[19] A. Beletsky, “An Effective Algorithm for the Synthesis of
Irreducible Polynomials over a Galois Fields of Arbitrary
Characteristics,” in WSEAS Transactions on Mathematics 20, pp.
508-519, 2021.

https://doi.org/10.1109/ISOCC56007.2022.10031330
https://doi.org/10.1109/LPT.2019.2895686
https://doi.org/10.1007/s00200-005-0190-z

	I. Introduction
	II. Materials and methods
	A. Original Presentation of Reed-Solomon Codes
	B. BCH Representation of Reed-Solomon Codes
	C. Key Features of Reed-Solomon Codes

	III. Results and discussion
	A. Mathematical Background of an Extended Galois Field GF(pn)
	A. Algorithm Main Steps
	B. Testing the algorithm

	Conclusions
	Acknowledgments:
	References

