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Abstract. This article explores real data on brain cancer. This type of biological data has a few 

particularities like a great number of attributes – antibodies and genes. However the number of entries is 

rather small because the data have to be obtained from real patients. This process is time consuming and very 

costly. Due to that, this research provides detailed data description as well as analyzes their particularities, 

type and structure. Correspondingly, classification rules are also difficult to discover. This research is 

dedicated to finding applications of classification methods aimed at determining interconnections that could 

be used to classify brain cancer. Working exactly with such unique data has a great practical value, because 

the data obtained can be used in future to continue the research and in practical diagnostics with the 

possibility to offer the data to biologists for interpretation. To speed up the obtaining of interconnections, only 

important attributes were used. Various methods of interconnection determination were employed. 

Conclusions about this type of data analysis, obtaining classification rules and the precision of obtained rules 

are made and directions of future work are outlined.  

 

Keywords: antibody display, classification, data mining, IF- THEN rules. 

 

Introduction 

In the last few years the rapid development of computer systems has enabled performing even 

more complicated computing actions; thus data obtaining algorithms that can identify and 

classify various diseases have become very popular. One of the first works in this sphere is 

Golub et al. [1] research that is a basis for many other researches [2-4]. Different methods and 

the most popular gene expression data set description can be found in [5]. 

In the present work, the analyzed data are antibodies which are created as a response to some 

infectious disease microorganism, vaccine or another anti-gene and which react specifically to 

this particular anti-gene [6]. As a result, by creating antibodies, conclusions can be made 

whether a patient has been infected with particular disease. Such real data analysis and 

obtaining of important interconnections in classification is also done by biologists themselves 

[7], however the methods they are using differ a little from the methods used in the process of 

collecting and analyzing data. 

Two methods of obtaining fuzzy rules were used in this paper - FURIA (An Algorithm For 

Fuzzy Rule Induction) and FLR (Fuzzy Lattice Reasoning) classifiers. The FURIA algorithm 

was proposed in 2009 by Hühn and Hüllermeier [8]. FURIA is a RIPPER algorithm 

modification, preserving all RIPPER [9] algorithm advantages, for example, a simple and 

well understood set of laws. In addition, it includes a number of modifications and extensions. 

FURIA obtains fuzzy rules instead of the usual strict rules, as well as an unordered rule set 

instead of the rule list. In addition, to address the problem of uncovered samples it uses an 

efficient method for stretching the rules. Combined with a sophisticated law induction method 

provided by the original RIPPER algorithm these improvements have led to a better rule 

induction algorithm for classification, which requires only a small increase in classification 

time. Authors have made extensive experiments that show that FURIA outperforms the 

original RIPPER algorithm, as well as other methods of obtaining fuzzy rules.  

The FLR classifier was proposed in 2007 by Kaburlasos, Athanasiadis and Mitkas [10]. The 

FLR classifier is designed to obtain descriptive, decision-making knowledge (rules) in a 
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mathematical lattice data. Training takes place both gradually and rapidly, calculating the 

disjunctions of interval conjunctions. In this article, the authors study the problem of ozone 

concentration from both meteorological and air pollutant measurements. The FLR classifier 

induces rules from training examples, allowing a rise in the size of the diagonal of the rule to 

a maximum threshold. FLR is the Leader-Follower classifier, which learns quickly at a time, 

using the results of training. Data input order is vital. The total number of rules is not known a 

priori, but it is usually determined during the training period [10]. 

The first section of the paper describes the methods used and general principles underlying 

their work.  The set of data used in the experiments is specified and compared to other 

publicly available databases. The second section discusses the experiments performed and 

their results. In conclusion, some observations about particular data set and directions of 

future research are provided. 

 

Materials and methods 

In the course of this study, experiments with real data of cancer research antibodies were 

performed. A short review of the data set is given in Table 1. Clearly biological data specifics 

can be seen – a great number of attributes and a rather small count of entries.  There are also 

problems with data domination, which is a topical problem, because such biological data 

experiments are relatively expensive and complicated to perform. Important factor in cancer 

classification is the stage of the disease – the later the stage, the clearer it is to classify. 

However, in this research the stage has not been considered, as not all of the entries have this 

data provided. That is why 1229 attributes (genes) are used in experiments. 

 

Table 1. 

Brain cancer data set description 

Number of attributes (genes) 1230 

Number of classes 2 
Brain cancer (BrCa) 

Healthy donor (HD) 

Number of instances 168 
BrCa – 13 

HD – 155 

 

The data set in the space of the two most important attributes determined (where 329 and 501 

are two most relevant attributes) in the experiment is displayed in Fig. 1. 
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Fig. 1. Brain cancer data set relevant attributes 
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Let us describe the methods used in the experiments in more detail. Since six different 

methods were used in the classification and the first four of them - Ridor [11], PART[12], 

OneR [13] and JRIP (a version of RIPPER algorithm [15] that was created especially for 

WEKA) are rigorous training methods in Weka and only the last two - FLR and FURIA are 

based on fuzzy rules, they also will be given extra attention. 

Let us describe the FURIA algorithm. The representation of rules is as follows. A fuzzy 

selector F

ii IA  covers an instance )...( 1 nxxx  to the degree )( i

F

i xI . A fuzzy rule 

Fr involving k selectors ,,...1),( kiIA F

ii  covers x to the degree [8]: 

.)()(
...1





ki

i

F

ir
xIxF      (1) 

Rule fuzzification. For the fuzzification of a ( ii IA  ) it is important to consider only the 

relevant training data 
i

TD , i.e., to ignore those instances that are excluded by any other 

antecedent [8]: 
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where 
)( j

TD  denotes the subset of training instances with label j [8]. 

Let us describe the FLR classifier [10]. The main rules used in this algorithm are as follows. 

Definition 1. A fuzzy lattice is a pair ,L , where L  is a crisp lattice and  ,LL is a 

fuzzy set with membership function ]1,0[:  LL  such that 1),( yx if and only if .yx   

Definition 2. An inclusion measure   in a complete lattice L  is a real function 

]1,0[: LL such that for Lyxwu ,,, the following conditions are satisfied: 

(C0) OxOX  ,0),(  

(C1) Lxxx  ,1),(   

(C2) ),(),( wxuxwu   – The Consistency Property 

(C3) .1),(  yxxyx  . 

Proposition 3. If ]1,0[: LL is an inclusion measure on lattice L , then ,L is a fuzzy 

lattice. 
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Proposition 4. If L  is a (complete) lattice and RLv : is a positive valuation (with 

)0)( Ov  then (1) 
)(

)(
),(

uxv

uv
uxk


 and (2) 

)(

)(
),(

xv

uxv
uxs


 are inclusion measures. 

Proposition 5. Let iL  be a totally-ordered lattice, let RLv : be a positive valuation, and 

let ii LL :  be an isomorphic function in iL . Then a positive valuation function 

RLi )(: is given by ).())((]),([ bvavba    

Definition 6. Consider a product lattice ....1 nLLL   Let RLv ii : be a positive valuation 

function in the constituent lattice .,...1, NiLi  . Then the diagonal of an interval )(],[ Lba  , 

with ba  , is defined as a non-negative real function  0)(: RLdiagp  given by 

...2,1),,(]),([  pbadbadiag pp  

Proposition 7. For ,...2,1p we have ),(max]),([ ],[, yxdbadiag pbayxp  [10]. 

 

Results and discussion 

In the course of this work several experiments with various attribute importance methods 

available in software WEKA [14] were made to determine the number of important attributes 

that can be used in further experiments. As can clearly be seen, eight different combinations 

of methods were used to reach the goal – to obtain most important attributes, to narrow the 

data capacity that can be used to successfully perform classification several times. In every 

series of experiments 10 fold cross validation was used to get more accurate results with 

different methods and to make them less affected by coincidence. As a result, 75 attributes 

were found to be most important in this data set and all other experiments were performed 

with already narrowed data set. 

To perform classification, classifiers based on interconnections that can be accessed in 

WEKA software were used. The results obtained are summarized in Table 2. In the first 

column the name of an algorithm is given; in the second – the number of correctly classified 

examples; in the third – the number of incorrectly classified examples; in the fourth – the 

accuracy of classification and in the fifth – the summarized number of obtained 

interconnections.  

The last two methods - FLR and FURIA use fuzzy set theory to obtain the rules. As can be 

seen from the results, FLR reached the highest results - the classification accuracy of 95%. 

Table 2. 

Result of classification 

Algorithm 

Correctly Classified 

Instances 

Incorrectly Classified 

Instances  Accuracy 

Number 

of rules 

Ridor 149 19 88.69% 1 

PART decision 159 9 94.64% 2 

OneR 160 8 95.24% 2 

JRIP 152 16 90.48% 2 

Fuzzy lattice 

Reasoning (FLR) 161 7 95.83% 7 

FURIA 156 12 92.86% 5 

 

Since in such real life problem one class has a significantly greater (155 against 13) number 

of entries, it is important to clarify which examples have been classified incorrectly. In Table 

3 the results of classification are summarized by the value, how precise every attribute 

classifies entries of each class. We can see that the best score for the “Brain cancer” class is 
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shown by Fuzzy FLR classificatory, then PART decision algorithm, which by overall 

accuracy score takes the second place a little behind OneR algorithm. The results of other 

algorithms are not so good. Of course, the practical result is important here – if a patient who 

is perfectly healthy is classified as a cancer case, it definitely is no good, though the patient is 

not in danger. However, if the case is opposite: a cancer patient is classified as healthy, it is 

extremely dangerous, because often timely diagnosis of this disease provides recovery 

possibilities. 

Table 3. 

Algorithm confusion matrix 

Classifier 

  

  

Classified as   

a= BR b=HD 

Classification accuracy 

for each class 

RIpple DOwn Rule Learner(Ridor) 

a=BR 2 11 15.38% 

b=HD 8 147 94.94% 

PART decision 

a=BR 7 6 53.85% 

b=HD 3 152 98.06% 

OneR 

a=BR 6 7 46.15% 

b=HD 1 154 99.35% 

JRIP 

a=BR 3 10 23.08% 

b=HD 6 149 96.13% 

FLR 
a=BR 9 4 69.23% 

b=HD 3 152 98.06% 

FURIA 
a=BR 2 11 15.38% 

b=HD 1 154 99.35% 

 

Interconnections obtained as a result of classification are shown in Table 4. As displayed, 

various classifiers use different classification methods. That is why the resulted 

interconnections are with different attributes; however one of them, namely 329, dominates 

significantly. Prominently displayed are the differences of each algorithm in the rule induction 

process and the contents of the rules (see Table 4). 

Table 4. 

Rules 

Classif. Rule 

Ridor IF 329 <= 0.852165  THEN Category = Br  

PART 
IF 329 > 0.835414 AND 1142 <= 1.132913 THEN Category=HD 

IF 568 <= 0 AND 223 <= 0.851652 THEN Category=Br 

ONE R 
IF 329< 0.78095255 THEN Category=Br 

IF 329>= 0.78095255 THEN Category=HD 

JRIP 
IF 958 <= 0.837699 and 115 <= 0.845161 THEN Category=Br  

IF 329 <= 0 THEN Category=Br 

FLR 

IF 329 [0.835414, 0.8458] THEN Category=Br  (CF = 0.74) 

IF 997 [0, 0.815175] and 115[0.845161, 0.853948] THEN Category=Br (CF = 0.77) 

IF 501 [1.024421, 1.028017]) THEN Category=HD (CF = 1.0) 

IF 87 [0, 0.803008] and 104 [1.259394, 1.283743] THEN Category=HD (CF = 1.0) 

IF 997 [1.021784, 1.026568] THEN Category=HD (CF = 1.0) 
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Classif. Rule 

FURIA 

IF data in interval  

[ 0.0  1.7643473 ] [ 0.0  1.1474993 ] [ 0.0  1.2891427 ] [ 0.0  1.0846912 ]  

[0.744659  1.3009045] [ 0.0  1.0004329 ] [ 0.0  1.2837429 ] [ 0.6871632  1.108951 ] 

[ 0.0  1.1201585 ]  [ 0.0  1.4158141 ]  [ 0.0  1.6925139 ] [ 0.0  1.0963819 ]  

[ 0.0  1.2071105 ] [ 0.0  0.8506509 ] [ 0.9561629  1.1801563 ] [ 0.0  1.2243818 ]  

[ 0.9354909  1.3019569 ]  [ 0.0  1.5064373 ] [ 0.0  1.0559155 ] [ 0.0  1.1105751 ]  

[ 0.0  1.2031143 ] [ 0.0  2.3868061 ] [ 0.0  1.2479679 ] [ 0.0  2.1671135 ]   

[ 0.8866751  1.0796594 ]  [ 0.0  1.260543 ]  [ 0.0  0.8510461 ]  [ 0.0  1.3208536 ]  

[ 0.8985972  1.2919535 ]  [ 0.9869045  1.840857 ]  [ 0.0  1.2867797 ]   

….. 

[ 0.9319126  1.2546412 ]  [ 0.7294844  1.1581615 ] [ 0.0  1.1322578 ]   

THEN Class=Br, et al. 

 

Conclusions and future work 

As expected, the results are difficult to evaluate, because the number of cancer patients in the 

training data set is very small; even after performing 10 fold cross-validation the results are 

still not satisfactory, because the best result in classifying cancer patients is 69%, which 

means that only in a bit more than half of the cases in this classification has been correct. Due 

to that, it is necessary to use other methods for data classification. 

However, it should be emphasized that the use of fuzzy classification methods produces 

higher-quality results and comparably the best result of the crisp methods of Brain Cancer 

classification is 53% as compared with 69% obtained by fuzzy method (FLR). 

In general, it can be concluded that the FURIA algorithm shows worse results than FLR; 

however, to objectively assess capabilities of this algorithm it should be possible to make 

comparisons with other publicly available data sets whose classification results are publicly 

available. Of course, the main advantage of the fuzzy rule-based technique is the decision 

making process. Each person can easily and intuitively perceive the classification process, as 

it operates with IF -THEN rules, which are closer to the real, everyday language. In this 

situation rules inducted by FURIA are better understandable. So the main issue is 

classification accuracy or well understandable rules. 

The directions of further research include studying other types of cancer separately and also 

researching all of the available types of cancer with data of healthy donors. It is necessary to 

continue research on different methods of important attributes selection to optimize the 

required work. 
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Anotācija. Šajā rakstā pētīti reāli smadzeņu vēža dati. Šāda veida bioloģiskajiem datiem ir savas 

īpatnības – liels atribūtu – gēnu, antivielu skaits. Toties ierakstu skaits ir neliels, jo datus nepieciešams iegūt no 

reāliem pacientiem, šāds process ir lēns un ar lielām materiālajām izmaksām. Tāpēc darbā dots izmantoto datu 

sīks apraksts, analizētas to īpatnības, veids un struktūra. Attiecīgi arī klasifikācijas likumu atklāšana šādos datos 

ir sarežģīta. Šis pētījums veltīts klasifikācijas metožu pielietošanai ar mērķi atrast likumsakarības, kuras būtu 

iespējams izmantot smadzeņu vēža klasifikācijā. Tieši darbam ar šādiem unikāliem datiem ir ārkārtīgi liela 

praktiska vērtība, jo tos iespējams nākotnē izmantot turpmāko pētījumu veikšanai, kā arī praktiskam 

pielietojumam diagnosticēšanā ar iespēju nākotnē tos piedāvāt arī interpretēšanai biologiem. Lai paātrinātu 

likumsakarību iegūšanu, tika izmantoti tikai nozīmīgie atribūti. Tika pielietotas vairākas metodes nozīmīgo 

atribūtu iegūšanā. Izdarīti secinājumi par šāda veida datu apstrādi, klasifikācijas likumu iegūšanu, iegūto 

likumu precizitāti, kā arī aprakstīti nākotnē plānotie darbi.  
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