• Marija Maļceva Latvijas Universitāte (LV)
  • Māra Vikmane Latvijas Universitāte (LV)
  • Veneranda Stramkale Latgales Lauksaimniecības zinātnes centrs (LV)
  • Aldis Stramkalis Latgales Lauksaimniecības zinātnes centrs (LV)




cabbage, chlorophyll, fluorescence parameters, harvest, nitrogen fertilizer


Nitrogen is considered to be harvest-limiting element. Almost all investigations showed that under optimal nitrogen fertilizer harvest increases despite different and contrastive environmental conditions. There is a lack of research about changes of plant photosynthetic action under nitrogen fertilizer influence. During field and laboratory experiments changes of head cabbage (‘Ancoma F1’ variety) photosynthesis - related parameters under different nitrogen supply (50, 120, 190, 190 + 40 and 190 + 50 + 40 N kg ha-1) were observed. Results of field and laboratory experiments showed that optimal nitrogen fertilizer doses are 190 and 190 + 40 N kg ha-1. The conlusion is that chlorophyll content (in SPAD readings and mg.dm-2) and fluorescence parameters (Fv/Fm, Fv/Fo, RC/ABS and PI) can be used as early indicator for forseeing nitrogen fertilizer efficiency for head cabbage. Fluorescence parameters give precise view of nitrogen fertilizer role in plant physiological processes and nitrogen effect on plant growth and development.


Download data is not yet available.


Neufeld H.S., Chappelka A.H., Somers G.L., Burkey K.O., Davison A.W., Finkelstein P.L. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynthesis Research, 2006. 87:281-286.

Netto A.T., Campostrini E., de Oliveira J.G., Yamanishi O.K. Portable chlorophyll meter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in Carica papaya L. Brazilian Journal of Plant Physiology, 2002. 14:203-210.

Гавриленко В., Жигалова Т. Большой практикум по фотосинтезу. Москва: Академия, 2003. 256 стр.

Duraes F.O.M., Gama E.E.G., Magalhaes P.C., Marriel I.E., Casela C.R., Oliveira A.C., Luchiari A.Jr., Shanahan J.F. The usefulness of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminium toxicity tolerance, and N use efficiency in maize. Seventh Eastern and Southern Africa Regional Maize Conference 11th-15th February, 2001. pp.356–360.

Panda D., Rao D.N., Sharma S.G., Strasser R.J., Sarkar R.K. Submergence effects on rise genotypes during seedling stage: Probing of submergence driven changes of photosystem II by chlorophyll a fluorescence induction O-J-I-P transients. Photosynthetica, Vol.44, 2006. 1:69-75.

Hajiboland R., Hasani B.D. Effect of Cu and Mn toxicity on chlorophyll fluorescence and gas exchange in rice and sunflower under different light intensities. Journal of Stress Physiology & Biochemistry Vol.3, 2007. 1:4–17.

Otronen M., Rosenlund H.M. Morphological asymmetry and chlorophyll fluorescence in Scots pine (Pinus sylvestris): responses to variation in soil moisture, nutrients and defoliation. Annales Botanici Fennici, 2001. 38:285-294

Gastal F., Lemaire G. Nuptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, Vol.53, 370. Inorganic Nitrogen Assimilation Special Issue : 2002. pp.789-799.

Sidlauskas G., Bernotas S. Some factors affecting seed yield of spring oilseed rape (Brassica napus L.). Agronomy Research, 2003. 1(2):229-243.

Pinior A., Grunewaldt-Stocker G., Alten H., Strasser R.J. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza, 2005. 15:596–605.

Maxwell K., Johnson G.N. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, Vol. 51, 2000. 345:659-668

Netto A.T., Campostrini E., de Oliveira J.G., Bressan-Smith R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD–502 readings in coffee leaves. Scientia Horticulturae, 2005. 104:199-209

Samsone I., Andersone U., Vikmane M., Ieviņa B., Pakarna G., Ievinsh G. Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a chlorophyll meter. – Acta Universitatis Latviensis, 723, Biology: 2007. pp.145-154.

Mohr H., Schopfer P. Plant Physiology transl. by Gudrun and David W. Lawlor. Berlin: Springer, 1995. 629 p.

Skorzynska-Polit E., Baszynski T. Does Cd2+ use Ca2+ channels to penetrate into chloroplasts? A preliminary study. Acta Physiologiae Plantarum, Vol.22, 2000. 2:171-178.

Zhou X.J., Liang Y., Chen H., Shen S.H., Jing Y.X. Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica, 2006. 44(4):530-535.

Xu Z.Z., Zhou G.S. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal of Plant Growth Regulation, 2006. 25:252-266.

Verhoeven A.S., Demmig-Adams B., Adams W.W. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology, 1997. 113:817-824

Ainsworth E.A., Davey P.A., Hymus G.J., Osborne C.P., Rogers A., Blum H., Nosberger J., Long S.P. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant, Cell & Environment, 2003. 26:705-714.




How to Cite

M. Maļceva, M. Vikmane, V. Stramkale, and A. Stramkalis, “EFFICIENCY OF NITROGEN FERTILIZER APPLICATION ON WHITE CABBAGE”, ETR, vol. 1, pp. 125–132, Aug. 2015, doi: 10.17770/etr2009vol1.1106.