Mathematical Model of Friction Coefficient Determination for Lubricated Surfaces


  • Armands Leitans Riga Technical University (LV)
  • Janis Lungevics Riga Technical University (LV)



friction coefficient, boundary friction, sliding friction


This article reviews mathematical model for the determination of friction coefficient for lubricated surfaces which operate works at sliding friction pairs in boundary lubrication case. In the particular model an absolutely smooth ball and rough surface contact is viewed taking into account properties of the material, surface roughness parameters, lubricating material kinematic viscosity and density. The model refers to widely spread ball-on-disc type tribometer where ball is in the contacts with plane.


Download data is not yet available.


ASTM G99 – 05 Standard Test Method for Wear Testing with Pin-on-Disc appparatus 2010.

Leitans A, Springis G, Rudzitis J, Semjonovs J, Berezins G, Determination of coefficient of friction for different oil additive concentrations in automotive oil , 10th International Conference Mechatronic Systems and Materials. Conference proceedings, Opole 2014

George E. Totten, Simon C. Tung Automotive lubricants and testing .

Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов, 1981.

Рудзитис Я., Контактная механика поверхностей 2ч , Рижский технический университет, 2007

Konrads G., Mašīnu detaļu slīdes virsmu dilšana ; Rīgas tehniskā universitāte , 2006.

KRAGELSKY I., ALISIN V . Tribology – Lubrication, Friction and Wear. MIR publishers Moscow, 2001




How to Cite

A. Leitans and J. Lungevics, “Mathematical Model of Friction Coefficient Determination for Lubricated Surfaces”, ETR, vol. 1, pp. 121–124, Jun. 2015, doi: 10.17770/etr2015vol1.227.