• Serhii Yermakov Educational and Scientific Laboratory “DAK GPS”, Higher educational institution «Podillia State University» (UA)
  • Taras Hutsol Department of Mechanics and Agroecosystems Engineering, Polssia Natoinal University (UA)
  • Igor Gerasymchuk Faculty of Energy and Information Technologies, Higher educational institution «Podillia State University» (UA)
  • Pavlo Fedirko Faculty of Engineering and Technology, Higher educational institution «Podillia State University» (UA)
  • Viktor Dubik Faculty of Energy and Information Technologies, Higher educational institution «Podillia State University» (UA)



vault formation, unloading, cuttings, energy willow, bunker, vault, automation of planting


The article highlights the problems of ensuring continuous unloading of energy willow cuttings from slotted bunkers.  During the free discharge of rod-like bodies, such phenomena as crypt formations, distortions, pinching occur, which stop the discharge under the action of gravity.  Finding such parameters, under which the system will work evenly and without stops, will make it possible to automate many processes related to working with such material, in particular, when developing a piecemeal selection mechanism for a planting machine.  The study revealed and analyzed the possible forms of vaults that are formed during unloading from creating obstacles to movement.  As a hopper model, for unloading cuttings, a slotted hopper in the form of two walls located at angles to the horizontal plane is considered.  These walls form an unloading slot with adjustable width of the unloading window and an adjustable tilt angle.  During the study, vaults were recorded, which are formed at different parameters of the bunker during free unloading.  As research has shown, in order to ensure uninterrupted unloading of cuttings, there is such a width of the unloading window of the hopper, which will ensure uniform pouring of cuttings without crypt formations and stops associated with this process.  The analysis of continuous discharge of rod-like material established that for cuttings of energy willow, the width of the window, which ensures continuous discharge, is 8-12 cm.


Download data is not yet available.


V.V.Adamchuk, H.L.Baranov, O.S.Baranovskyi Suchasni tendentsii rozvytku konstruktsii silskohospodarskoi tekhniky [Modern trends in the development of constructions of agricultural machinery]. Kyiv: Ahrarna nauka, 2004 (in Ukrainian)

T. Hutsol, S. Glowacki, K. Mudryk. Agrobiomass of Ukraine – Energy Potential of Central and Eastern Europe (Engineering, Technology, Innovation, Economics). Monograph. Warsaw, 2021.

D. Baran, D. Kwaśniewski, K. Mudryk. Wybrane właściwości fizyczne trzyletniej wierzby energetycznej [Selected physical properties of a three-year-old energy willow]. Inżynieria Rolnicza. V.11., 2007. (in Polish)

J. Frączek, K. Mudryk. Jakości sadzonek wierzby energetycznej w aspekcie sadzenia mechanicznego [The quality of energy willow seedlings in terms of mechanical planting]. Inżynieria Rolnicza, 6 (66), 2005 (in Polish)

M.V. Roik, V.M. Sinchenko, Y.D. Fuchylo. Energety`chna verba: texnologiya vy`roshhuvannya ta vy`kory`stannya [Energy willow: cultivation technology and usage]., Vinnitsa: LLC “Nilan-LTD”, 2015 (in Ukrainian)

R.N. Mynko. Problema svodoobrazovanyia v emkostiakh bunkernoho tipa v uslovyiakh dlitelnoho khraneniya [The problem of arch formation in bunker-type tanks under long-term storage conditions]. Yaroslavskyi pedahohycheskyi vestnyk, 3(1). 2017.(in Russian)

J.E. Mattsson, P.D. Kofman. Influence of particle size and moisture content on tendency to bridge in biofuels made from willow shoots, Biomass and Bioenergy, V. 24, Issue 6, 2003, P.429-435,

S. Yermakov, K. Mudryk, T. Hutsol. The analysis of stochastic processes in unloadingthe energywillow cuttings from the hopper. Environment. Technology. Resources. Rezekne, Latvia. Vol. III. 2019, pp. 249-252, https://doi:10.17770/etr2019vol3.4159.

V. Ivanyshyn, S. Yermakov , T. Ishchenko. Calculation algorithm for the dynamic coefficient of vibro-viscosity and other properties of energy willow cuttings movement in terms of their unloading from the tanker. Renewable Energy Sources, vol. 154, E3S Web of Conferences. 2020, pp. 04005, https://doi:10.1051/e3sconf/202015404005.

M. Korchak, S. Yermakov, V. Maisus. Problems of field contamination when growing energy corn as monoculture. E3S Web of Conferences. Krynica, Poland. Vol.154, 2020.

M. Korchak, S. Yermakov, T. Hutsol, L. Burko, W. Tulej. Features of weediness of the field by root residues of corn Vide. Tehnologija. Resursi - Environment, Technology, Resources, V. 1, 2021. pp. 122–126

A. Tryhuba, S. Komarnitskyi, I. Tryhuba. Planning and Risk Analysis in Projects of Procurement of Agricultural Raw Materials for the Production of Environmentally Friendly Fuel. International Journal of Renewable Energy Developmentthis, V.11(2), 2022. pp. 569–580

O. Kucher, L. Prokopchuk. Economic aspects of biomass market development in Ukraine. Renewable Energy Sources engineering, technology, innovation. Krynica. 2019

V.A. Bogomjagkih, A.Yu. Nesmiyanyu. Funkcionirovanie bunkerov maksimalnogo rashoda v usloviyah svodoobrazuyushego istecheniya zernovyh materialov [Functioning of maximum flow bins in conditions of arch-forming outflow of grain materials]. Monograph. Zernograd. 2015. 179 p. (in Russian)

O. Kucher, L. Prokopchuk. The development of the market of the renewable energy in Ukraine. Renewable Energy Sources: Engineering, Technology, Innovation. Springer International Publishing AG. 2017

H. Mao,L.Han, J. Hu, F. Kumi. Development of a pincette-type pick-up device for automatic transplanting of greenhouse seedlings. Applied engineering in agriculture, 30(4). 2017

S.B. Savage, S.C. Cowin. Theories for Flow Granular Materials. American Society of Mechanical Engineers, Buffalo, N.Y. 1999.

Y. Lu, W. Jin, N. Saha, J. Lee Klinger, Y. Xia, S. Dai. Wedge-Shaped Hopper Design for Milled Woody Biomass Flow. ACS Sustainable Chemistry & Engineering 2022, 10 (50), 16803-16813.

D. Barletta, R.J. Berry, S.H. Larsson, T.A. Lestander. Assessment on bulk solids best practice techniques for flow characterization and storage/handling equipment design for biomass materials of different classes. Fuel Processing Technology, V.138, 2015 P.540-554,

W.R. Ketterhagen, J.S. Curtis, C.R. Wassgren, B.C. Hancock. Predicting the flow mode from hoppers using the discrete element method. Powder Technology, V. 195. 2009. P.1-10.

Y.V. Horiushynskyi. Emkosty dlia sypuchikh gruzov v transportno-hruzovykh sistemakh [Tanks for bulk cargo in transport and cargo systems]. Samara: SamHAPS. 2003 (in Russian)

S. Yermakov, T. Hutsol, S. Glowacki, V. Hulevskyi, V. Pylypenko. Primary Assessment of the Degree of Torrefaction of Biomass Agricultural Crops. Environment. Technologies. Resources. 2021. pp.264-267.

S. Yermakov, T.Hutsol, V.Devin, S.Oleksiyko, P. Potapskyi. Effectiveness of cognitive digressions in classes of general technical disciplines in institutions of higher education of agro-technical direction.Engineering for rural development. 2022. pp.460-465

S. Yermakov, T. Hutsol, A. Rozkosz, S. Glowacki, S. Slobodian. Evaluation of Effective Parameters Of Biomass Heat Treatment in Processing for Solid Fuel. Engineering for Rural Development. 2021.

M. Wrobel, K. Mudryk, M. Jewiarz. Impact of raw material properties and agglomeration pressure on selected parmeters of granulates obtained from willow and black locust biomass. Engineering for Rural Development. Jelgava. 2018




How to Cite

S. Yermakov, T. Hutsol, I. Gerasymchuk, P. Fedirko, and V. Dubik, “STUDY OF THE UNLOADING AND SELECTION PROCESS OF ENERGY WILLOW CUTTINGS FOR THE CREATION A PLANTING MACHINE”, ETR, vol. 3, pp. 271–275, Jan. 2024, doi: 10.17770/etr2023vol3.7199.