• Tsanko Karadzhov Technical University of Gabrovo (BG)
  • Lyubomir Lazov Rezekne Academy of Technology (LV)



laser power, measurement methods, types of measuring devices, physical principles


The application of lasers in many fields of technology and medicine is constantly increasing. This causes the development of new physical methods and principles for correct measurement of power, energy, and other parameters of laser sources. In most cases, the correct measurement of the laser power is important because the quality of the processes in which laser sources are used depends on it. In the paper, a comparative analysis of the existing methods for measuring the power and energy of laser radiation of diverse types of laser sources is made. This research aims to help users of laser equipment to choose the right measurement method depending on the laser source.


Download data is not yet available.


Y. Klimkov, M. Horoshev, Lazernaya Tehnika, Uchebnoe posobie – M.: MIIGAiK, 2014, UDK 621.375.826 (075.8).

S. Bergman, Laser power measurement: Time is money, Industrial laser solutionst for manufactoring, Santa Clara, CA.

D. A. Jennings, E. D. West, K. M. Evenson, A. L. Rasmussen, and W. R. Simmons, Laser Power and Energy Measurements, Nat. Bur. Stand. (U.S.), Tech. Note 382, 64 pages (Oct. 1969).

[Online]. Available:

A. Shemyakin, M. Rachkov, M. Yakimov, Izmerenie moshtnosti lazernogo izluchenia tehnologicheskogo kompleksa s nesamostoyatelnyim tleyushtim razryadom, 2009, UDK 681.326.74.

Pulov, D., T. Karadzhov, Optoelectronic Device for Measuring the Power of Laser Radiation. Environment. Technology. Resources. Rezekne, Latvia, Proceedingsofthe 13th International Scientificand Practical Conference. Volume 3, 286-290, 2021, DOI: 10.17770/etr2021vol3.6590.

J. A. Hadler, C. L. Cromer, and J. H. Lehman, NIST Measurement Services: cw Laser Power and Energy Calibrations at NIST, NIST Special Publication (2007), Vol. 250–75.

[Online]. Available:

[Online]. Available:

Lazov, L., T. Karadzhov, Methods for Measuring Laser Power. Environment. Technology. Resources. Rezekne, Latvia, Proceedings of the 13th International Scientific and Practical Conference. Volume 3, 173-180, 2021, Online ISSN 2256-070X, DOI: 10.17770/etr2021vol3.6565.

I. Ryger and et al, “MEMS Non-Absorbing Electromagnetic Power Sensor Employing the Effect of Radiation Pressure,” in Proceeding at the Eurosensors , Graz, Austria, 2018, DOI: 10.3390/proceedings2130767.

N. Angelov, “Investigation the Influence of the Number of Repetition and Volumetric Energy Density on Laser Marking of Products,” Journal of the Academy of Sciences and arts of the Republic of Srpska „Contemporary Materials, vol. V, no. 2, pp. 250-253, 2014, DOI: 10.7251/cm.v2i5.1738.

K. Agatsuma, D. Friedrich, S. Ballmer, G. DeSalvo, S. Sakata, E. Nishida, and S. Kawamura, “Precise measurement of laser power using an optomechanical system,” Opt. Express 22(2), 2013–2030 (2014).

S. A. Kuznetsov, A. G. Paulish, M. Navarro-Cía and A. V. Arzhannikov, “Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers,” Scientific Reports, vol. 6, 16 Feb 2016, DOI: 10.1038/srep21079.

P. Williams, J. A. Hadler, F. C. Maring, R. Lee, K. A. Rogers, B. J. Simonds, M. T. Spidell, A. D. Feldman and J. H. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means,” Opt. Express , vol. 25, p. 4382–4392, 2017.

Dichev, D., I. Zhelezarov, N. Madzharov. Dynamic Error and Methods for its Elimination in Systems for Measuring Parameters of Moving Objects. Transactions of Famena, volume 45, issue 4, 2021, pp. 55-70, DOI: 10.21278/TOF.454029721.




How to Cite

T. Karadzhov and L. Lazov, “COMPARATIVE ANALYSIS OF METHODS FOR MEASURING LASER POWER”, ETR, vol. 3, pp. 316–320, Jan. 2024, doi: 10.17770/etr2023vol3.7252.