WETLAND CHANGE DETECTION USING SENTINEL-2 IN THE PART OF LATVIA

Authors

  • Andris Skromulis Rezekne Academy of Technologies, Institute of Engineering (LV)
  • Juris Breidaks Institute of Electronics and Computer Science (LV)
  • Mārtiņš Puķītis Institute of Electronics and Computer Science (LV)

DOI:

https://doi.org/10.17770/etr2023vol1.7305

Keywords:

Wetlands, raised bogs, Sentinel-2, Semi-supervised classification, K-means, credibility

Abstract

In the article, the possible impact of changes on wetland were analysed by the semi-supervised classification method of statistical analysis. The Sentinel-2 raw data between two different seasons are combined together. The data preparation is shortly described in the article. Data is clustered with unsupervised method. The article describes a supervised method – how data credibility and classification can be estimated if its reference is poor quality.

 

Downloads

Download data is not yet available.

References

W. Wichtmann, C. Schröder, H. Joosten (Eds.), Paludiculture – Productive use of wet peatlands climate protection − biodiversity − regional economic benefits, Schweizerbart Science Publishers, Germany, Stuttgart, pp. 200-203

Parish, F., Sirin, A. A., Charman, D., Joosten, H., Minaeva, T. Y., & Silvius, M. (2008). Assessment on peatlands, biodiversity and climate change.

Ramsar Convention on Wetlands. (2018). Global wetland outlook: state of the world’s wetlands and their services to people. Gland.

Urák, I., Hartel, T., Gallé, R., & Balog, A. (2017). Worldwide peatland degradations and the related carbon dioxide emissions: the importance of policy regulations. Environmental Science & Policy, 69, 57-64.

Bonn, A., Allott, T., Evans, M., Joosten, H., & Stoneman, R. (Eds.). (2016). Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press.

Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., ... & Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU).

Zhou, Y., Davidson, T. A., Yao, X., Zhang, Y., Jeppesen, E., de Souza, J. G., ... & Qin, B. (2018). How autochthonous dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis and experiments. Earth-Science Reviews, 185, 928-937.

Morris, P. J., & Waddington, J. M. (2016). Climate change impacts on northern peatland carbon dynamics. Ecosystems, 19(2), 185-197

Opermanis, O. (1998). Wetlands and the Ramsar Convention in Latvia. Published by Latvian Ornithological Society.

Dinesen, L. & Hahn, P. (2019). Draft Ramsar Technical Report on peatland restoration and rewetting methodologies in Northern bogs. STRP22 Doc.7.2. https:// www.ramsar.org/document/strp22-doc72-draft-ramsartechnical-report-on-peatland-restoration-and-rewetting

Ķuze, I. (2012), Wetlands for nature and people, LIFE+ project “Restoring the hydrological regime of Ķemeri National Park” LIFE10 NAT/LV/000160 HYDROPLAN, pp 2, Nature Conservation Agency

Pakalne, M., Kalnina, L. (2005): Mire ecosystems in Latvia / Moor-Ökosysteme in Lettland – Stapfia – 0085: 147 - 174.

Šnore, A. (2013). Purvi un kūdra. Kūdras ieguve. Rīga: Nordik, 452

Couwenberg, J., & Joosten, H. (2012). The role of peatlands in mitigating climate change. In High Latitude Peatlands and Global Climate Change (pp. 211-226). Springer, Dordrecht.

Turner, T., Swindles, G., Charman, D. et al. (2016) Solar cycles or random processes? Evaluating solar variability in Holocene climate records. Sci Rep 6, 23961. https://doi.org/10.1038/srep23961

Spatial Resolution, (https://sentinels.copernicus.eu/web /sentinel/user-guides/sentinel-2-msi/resolutions/spatial)

Sentinel-2 UTM Tiling Grid (ESA). (2023). https://eatlas.org.au/data/uuid/f7468d15-12be-4e3f-a246-b2882a324f59

Gabrys, B., Petrakieva, L. (2004). Combining labelled and unlabelled data in the design of pattern classification systems. International journal of approximate reasoning, 35(3):251–273.

Bouchachia, A. (2007). Learning with partly labeled data. Neural Computing and Applications, 16(3):267–293.

Blum, A., Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Proceedings of the Workshop on Computational Learning Theory, page 92–100.

Goldman, S., Zhou, Y. (2000). Enhancing supervised learning with unlabeled data. International Conference on Machine Learning, page 327–334.

Ghahramani, Z.. Jordan, M.I. (1994). Supervised learning from incomplete data via an em approach. Advances in Neural Information Processing Systems, 6:120–127.

Eick, C., Zeidat, N., Zhao, Z. (2004) Supervised clustering–algorithms and benefits. IEEE International Conference on Tools with Artificial Intelligence, page 774–776.

Forestier. G., Wemmert, C. (2016). Semi-supervised learning using multiple clusterings with limited labeled data. Information Sciences, page 361–362.

Chawla, N. V., Karakoulas, G. (2005). Learning from labeled and unlabeled data: An empirical study across techniques and domains. Journal of Artificial Intelligence Research, 23:331–366.

Ferreira, D. (2019). k-Nearest Neighbors (kNN), MathWorks. Retrieved January 23, 2019, (https://www.mathworks.com/ matlabcentral/fileexchange/67018-k-nearest-neighbors-knn),.

Downloads

Published

2023-06-13

How to Cite

[1]
A. Skromulis, J. Breidaks, and M. Puķītis, “WETLAND CHANGE DETECTION USING SENTINEL-2 IN THE PART OF LATVIA”, ETR, vol. 1, pp. 209–213, Jun. 2023, doi: 10.17770/etr2023vol1.7305.