ENVIRONMENTALLY ACCEPTABLE SYNTHESIS OF MAGNESIUM BEARING FERTILIZERS. III SOLID STATE SYNTHESIS

Authors

  • Gergana Velyanova Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences (BG)
  • Krasimir Kossev Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences (BG)

DOI:

https://doi.org/10.17770/etr2024vol1.7974

Keywords:

fertilisers, nitrogen losses, magnesium sulphate, urea

Abstract

Nutrition is a key factor in human life and the development of civilization. The production of sufficient food requires the use of: efficient agricultural techniques, suitable soils and the use of nitrogen (N) fertilizers. However, the use of synthetic nitrogen fertilisers is associated with significant problems, caused by the fact that they are not sufficiently retained in soils to be taken up by plants and a significant proportion of the applied fixed nitrogen is lost. This is a serious economic problem for the farmers and a serious environmental problem for the society. In this work, the known methods for reducing the loss of bound nitrogen when fertilizer formulations are applied to the soil are discussed, and a promising preparation is presented, which is a complex of urea with magnesium sulfate, named magnesium sulfate hexaureate hemi hydrate, [Mg ((H2N)2CO)6] SO41/2 H2O, which can find application both alone and in the formulation of the complex fertilizer formulations, as well as a convenient method for its preparation. The use of [Mg ((H2N)2CO)6] SO41/2 H2O, instead of conventional nitrogen fertilisers, besides the reduction of losses of fixed nitrogen, is that it supplies the soil with the trace elements Mg and S. The low hygroscopicity and the good stability of the preparation are also essential. The known ureate complexes of magnesium sulphate and their preparation are discussed. The proposed new method of solid-phase synthesis, has certain advantages. The use of solid synthesis state methods has a number of advantages: solvent-free synthesis, low-temperature operation, high yields, and the absence of by-products make these methods the most environmentally acceptable.

Downloads

Download data is not yet available.

References

J. Erisman, M. Sutton, J. Galloway, Z. Klimont, & W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nature Geoscience, 1, 2008.

Z. He & Kumar, Alva & Calvert, D. & Banks, D., “Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH,” Soil Science, 1999.

R. Hood-Nowotny, E. Umana, N. H.-N. Inselbacher, P. Oswald-Lachouani, & W. Wanek, “Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil”, Soil Science Society of America Journal, 74, 1018–1027, 2010.

A. R. Mosier, J. M. Duxbury, J. R. Freney, O. Heinemeyer, & K. Minami, “Assessing and mitigating N2O emissions from agriculturalsoils,” ClimaticChange , 40 , 7– 38, 1998.

J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend, & C. J. Vöosmarty, “Nitrogen cycles: Past, present, and future,” Biogeochemistry, 70, 153–226, 2004.

R. K. Srivastava, R. K. Panda, A. Chakraborty, & D. Halder, “Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions,” Field Crops Research, 221, 339–349, 2018.

M. Prud’homme, “Global Fertilizer Supply and Trade: 2016 – 2017,” IFA Strategic Forum, Dubai, UAE, 2016.

F. H. Kaneko, J. P. Ferreira, A. J. F. Leal, E. H. C. B. van Cleef, V. C. Galati, & O. Arf, “Effect of urea and polymer-coated urea on N content of soil and leaves of maize cultivated in Brazilian Cerrado,” Soiland, TillageResearch, 209, 2021.

K. A. Nelson, S. M. Paniagua, & P. P. Motavalli, “Effect of polymer coated urea, irrigation, and drainage on nitrogen utilization and yield of corn in a claypan soil,” Agronomy Journal, 101(3), 681–687, 2009.

K. Honer, C. Pico, J. Baltrusaiti "Reactive Mechanosynthesis of Urea Ionic Cocrystal Fertilizer Materials from Abundant Low Solubility Magnesium- and Calcium-Containing Minerals", ACS SUSTAINABLE CHEMISTRY & ENGINEERING 6.4 4680-4687, 2018.

K.C. Nicolaou, T. Montagnon, “Molecules That Changed The World,” Wiley-VCH, p. 11, 2008.

M.S. Seelig, “Magnesium deficiency in the pathogenesis of disease. Early roots of cardiovascular, skeletal and renal abnormalities,” New York: Publ Plenum Medical Book Co, 1980.

I. Fleming, “Absolute Configuration and the Structure of Chlorophyll,” Nature 216 (5111), 1967.

T. Günther, “Mechanisms and regulation of Mg2+ efflux and Mg2+ influx,” Electrolyte Metab. Vol. 19, № 4-5. -P. 259-265, 1993.

J.P. Glusker, A. K. Katz, C. W. Bock, "Metal Ions In Biological Systems", The Rigaku Journal Vol. 16(2), 8-16, 1999.

C. W. Bock, A. Kaufman and J. P. Glusker, “Coordination of water to magnesium cations,” lnorg. Chem., 33, 419-427, 1994.

J. Srinivasa Rao, T. C. Dinadayalane, J. Leszczynski, and G. Narahari Sastry, “Comprehensive Study on the Solvation of Mono- and Divalent Metal Cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+,” The Journal of Physical Chemistry A112 (50), 2008.

B. Rousseau, C. Van Alsenoy, R. Keuleers, H.O. Desseyn, “Solids Modeled by Ab-Initio Crystal Field Methods. Part 17,”, 1998.

L. Lebioda, “On the geometry of urea-cation bonding in crystalline urea adducts,” Acta Crystallogr., Sect. B, 36, 271, 1980.

K. Kossev, L. Tsvetanova, B. Shivachev, R. Rusev, R. Nikolova, “Ureates and hydrates of magnesium chloride, nitrate and tetrafluoroborate,” Bulgarian Chemical Communications, 50, J, 79-89, 2018.

E.A. Frolova, K.K. Palkina, A.N. Kochetov, V.P. Danilov, Zh. Neorg. Khim. (Russ.) “Crystal structure of magnesium(II) diaquatetracarbamide nitrate,” Russ.J.Inorg.Chem., 57, 472, 2012.

T. Todorov, R. Petrova, K. Kossev, J. Macicek, O. Angelova, “Hexakis(urea-O)magnesium Dichlorate,” Acta Crystallogr., Sect.C: Cryst.Struct.Commun., 54, 927, 1998.

T. Todorov, R. Petrova, K. Kossev, J. Macicek, O. Angelova, “Aqua-(sulfato)-tetrakis(urea)-magnesium,” Acta Crystallogr., Sect.C: Cryst.Struct.Commun., 54(4), 456, 1998.

T. Todorov, R. Petrova, K. Kossev, J. Macicek, O. Angelova, “Magnesium Sulfate Hexaurea Hemihydrate”, Acta Crystallographica, Sect. C Cryst.Struct.Commun., 54(12): 1758-1760, 1998.

L. Lebioda, K. Stadnicka, J. Sliwinski, “Hexakis(urea)magnesium bromide-urea (1/4),” Acta Crystallogr., Sect.B: Struct.Crystallogr.Cryst.Chem., 35,157, 1979.

L. Lebioda, K. Lewinski, “Structure of diaquatetrakis (urea)magnesium bromide,” Acta Crystallogr., Sect.B: Struct.Crystallogr.Cryst.Chem,36, 693, 1980.

K. Kosev, N. Petrova, I. Georgieva, R. Titorenkova, R. Nikolova, “Crystalline adducts of urea with magnesium iodide,” Journal of Molecular Structure, 1224, 129009, 2021.

I. Georgieva, K. Kossev, R. Titorenkova, N. Petrova, Ts. Zahariev, R. Nikolova, “Effect of urea on arrangement of novel Mg (II) perrhenate crystal structures and their optical properties: Experimental and theoretical insight,” Journal of Solid State Chemistry, 312, 123263, 2022.

K. Yamagata, N. Achiwa, M. Hashimoto, N. Koyano, Ridwan, Y. Iwata, I. Shibuya, “Magnesium formate-urea (1/2),” Acta Crystallogr., Sect.C:Cryst.Struct.Commun., 48, 793-5, 1992.

T. D. Hayden, E. E. Kim, K. Eriks, “Crystal structures of bis(urea)bis (dihydrogenphosphato) calcium-bis(urea) and its isomorphous magnesium analog, M[OC(NH2)2]2(H2PO4)2.2CO(NH2)2 (M = Ca, Mg),” Inorg.Chem. ,21, 4054, 1982.

J. Y. Yee, R. O. E. Davis And S. B. Hendric, “Double Compounds of Urea with Magnesium Nitrate and Magnesium Sulfate”, JACS, 59, 570, 1937.

T. Hitomi et al., Nippon Dojo Hirvogaku Zosshi, 36(3), 63, 1965.

V. Kostov-Kytin, N. Petrova, K. Kossev, R. Titorenkova, G. Velyanova, “New data on crystal phases in the system MgSO4 – OC(NH2)2 – H2O,” Crystals, 14(3), 227, 2024.

G. Velyanova, K. Kossev, “Environmentally acceptable synthesis of magnesium bearing fertilizers. II Mechanochemical preparation,” Bulgarian Chemical Communications, in press

K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry,” John Wiley & Sons, Inc., 6th Edition, 2009.

T. Degen, M. Sadki, E. Bron, U. König, G. Nénert; “Powder Diffraction The HighScore suite,” / Volume 29 / Supplement S2 /, pp. S13–S18, 2014.

W. Kraus, G. Nolze, “POWDER CELL – A Program For The Representation And Manipulation Of Crystal Structures And Calculation Of The Resulting X-Ray Powder Patterns,” Journal of Applied Crystallography, 29(3) 301–303, 1996.

Downloads

Published

2024-06-22

How to Cite

[1]
G. Velyanova and K. Kossev, “ENVIRONMENTALLY ACCEPTABLE SYNTHESIS OF MAGNESIUM BEARING FERTILIZERS. III SOLID STATE SYNTHESIS”, ETR, vol. 1, pp. 413–418, Jun. 2024, doi: 10.17770/etr2024vol1.7974.