SEASONAL DYNAMIC IN CO2 ABSORPTION CAPACITIES OF NATURAL GRASSLANDS

Authors

  • Atanas Sevov dept. Crop Science, Agricultural University Plovdiv (BG)
  • Georgi Stanchev dept. Crop Science, Agricultural University Plovdiv (BG)
  • Veska Georgieva dept. Agrometeorology, BAS-NIMH (BG)
  • Lyubka Koleva-Valkova dept. Plant Physiology, biochemistry and genetics, Agricultural University Plovdiv (BG)
  • Georgi Komitov dept. Agricultural Mechanization, Agricultural University Plovdiv (BG)

DOI:

https://doi.org/10.17770/etr2024vol1.8005

Keywords:

Canopy photosynthesis, CO2, greenhouse gas, pastures, soil respiration

Abstract

A world problem of increasing importance is the continuous increase of greenhouse gases and the accompanying global warming. Growing global industries, excessive use of fossil fuels, along with deforestation and agriculture, which are major greenhouse gas polluters, are cited as the main causes. Of the greenhouse gases with the largest share, but also the possibility of control is CO2. This gas is vital for the growth and development of plants and, through them, is included in the continuous carbon cycle. On this basis, strategies for sustainable development in agriculture are built since this is one of the main sectors contributing to the increase in carbon emissions. The present study tracked the seasonal dynamic of CO2 uptake by natural grasslands positioned at two altitudes by measuring photosynthesis and plant and soil respiration. A significant variation in CO2 uptake capacity was observed depending on the climatic conditions.

Downloads

Download data is not yet available.

References

Ainsworth E.A. and Long S.P. , 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 New Phytol., 165 (2005), pp. 351-372, 10.1111/j.1469-8137.2004.01224.x

Aspinwall M.J. , C.J. Blackman, V.R. de Dios, F.A. Busch, P.D. Rymer, M.E. Loik, et al. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis Tree Physiol., 38 (2018), pp. 1286-1301, 10.1093/treephys/tpy045

Brigham-Grette, Julie. Scott Anderson, John Clague,Julia Cole,Peter Doran,Allan Gillespie,Eric Grimm,Peggy Guccione,Konrad Hughen,Stephen Jackson,Timothy Jull,Steven Leavitt,Rolfe Mandel,Joseph Ortiz,Donald Rodbell,Charlie Schweger,Alison Smith,Bonnie Styles. Petroleum Geologists' Award to Novelist Crichton Is Inappropriate. 2006 Volume 87, Issue 36 Pages 364-364

de Araujo Santos, G.A., Moitinho, M.R., Silva, B.D.O., Xavier, C.V., Teixeira, D.D.B., Cora, J.E. and La Scala Junior, N., 2019. Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO2 emission. Sci. Total Environ., 686: 413–424. doi:10.1016 /j.scitotenv.2019.05.398

Domec J.C., D.D. Smith, K.A. McCulloh A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole‐plant water use efficiency and resistance to drought Plant Cell Environ., 40 (2017), pp. 921-937, 10.1111/pce.12843

Ehhalt, D., M. Prather, F. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley, M. Wang. Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis, Third Assessment Report. IPCC: Working Group I of the Intergovernmental Panel on Climate Change. ISBN 0521-01495-6

Gamage, D. M. Thompson, M. Sutherland, N. Hirotsu, A. Makino, S. Seneweera New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations Plant Cell Environ., 41 (2018), pp. 1233-1246, 10.1111/pce.13206

Högberg, P. & Read, D.J. (2006). Towards a more plant physiological perspective on soil ecology. Trends Ecol. Evol., 21, 548– 554.

Huxman,T.E., K.A. Snyder, D. Tissue, A.J. Leffler, K. Ogle, W.T. Pockman, D.R. Sandquist, D.L. Potts, S. Schwinning. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems Oecologia, 141 (2) (2004), pp. 254-268, 10.1007/s00442-004-1682-4

IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland (2007).

Knapp,A.K., D.L. Hoover, K.R. Wilcox, M.L. Avolio, S.E. Koerner, K.J. La Pierre, M.E. Loik, Y. Luo, O.E. Sala, M.D. Smith. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Chang. Biol., 21 (7) (2015), pp. 2624-2633, 10.1111/gcb.12888.

Kutzbach L., J. Schneider, T. Sachs, M. Giebels, H. Nyk¨anen, N. J. Shurpali, P. J. Martikainen, J. Alm, and M.Wilmking CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences, 4, 1005–1025, 2007

Leakey, A.D, E.A. Ainsworth, C.J. Bernacchi, A. Rogers, S.P. Long, D.R. Ort Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE J. Exp. Bot., 60 (2009), pp. 2859-2876, 10.1093/jxb/erp096

Lin, J., M.E. Jach, R. Ceulemans. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2 New Phytol., 150 (2001), pp. 665-674 https://www.jstor.org/stable/1353671

Nielsen,U.N., B.A. Ball. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Chang. Biol., 21 (4) (2015), pp. 1407-1421, 10.1111/gcb.12789

Paudel,I. M. Halpern, Y. Wagner, E. Raveh, U. Yermiyahu, G. Hoch, T. Klein Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage Environ. Exp. Bot., 148 (2018), pp. 117-127, 10.1016/j.envexpbot.2018.01.004

Pastore et al., 2019 M.A. Pastore, T.D. Lee, S.E. Hobbie, P.B. Reich Strong photosynthetic acclimation and enhanced water‐use efficiency in grassland functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply Glob. Chang. Biol., 00 (2019), pp. 1-14, 10.1111/gcb.14714

Petit, J. R, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. PÉpin,, C. Ritz, E. Saltzman & M. Stievenard Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica Nature volume 399, pages 429–436 (1999)

Siegenthaler Urs, Thomas F. Stocker, Eric Monnin, Dieter Luthi, Jakob Schwander, Bernhard Stauffer, Dominique Raynaud, Jean –Marc Barnola, Hubertus Fischer, Valerie Masson-Delmotte, Jean Jouzel 2005, Stable Carbon Cycle–Climate Relationship During the Late Pleistocene (PDF). // Science 310 (5752). November. DOI:10.1126/science.1120130. p. 1313 – 1317.

Silveira M., Ed Hanlon, M. Azenha, and H.M. da Silva, 2018. Carbon sequestration in grazing land ecosystems. UF/IFAS Extension University of Florida, SL373

Sharma et al., 2014 N. Sharma, P.G. Sinha, A.K. Bhatnagar Effect of elevated [CO2] on cell structure and function in seed plants Clim. Chang. Environ. Sustain., 2 (2014), pp. 69-104, 10.5958/2320 642X.2014.00001.5

Smith, R.A., J.D. Lewis, O. Ghannoum, D.T. Tissue Leaf structural responses to pre-industrial, current and elevated atmospheric [CO2] and temperature affect leaf function in Eucalyptus sideroxylon Funct. Plant Biol., 39 (2012), pp. 285-296, 10.1071/FP11238

Spahni Renato, Jerome Chappellaz, Thomas F. Stocker, Laetitia Loulergue, Gregor Hausammann, Kenji Kawamura, Dominique Raynaud, Valerie Masson-Delmotte, Jean Jouzel Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores 2005. // Science 310 (5752). November. DOI:10.1126/science.1120132. p. 1317 – 1321.

Sutton, Rowan T, Buwen Dong, Jonathan M. Gregory. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations 2007, Volume 34, Issue 2 doi.org/10.1029/2006GL028164

Tausz,M. S. Bilela, H. Bahrami, R. Armstrong, G. Fitzgerald, G. O’Leary, et al. Nitrogen nutrition and aspects of root growth and function of two wheat cultivars under elevated [CO2] Environ. Exp. Bot., 140 (2017), pp. 1-7, 10.1016/j.envexpbot.2017.05.010

Weart, R. Spencer. The Carbon Dioxide Greenhouse Effect. The Discovery of Global Warming. American Institute of Physics, 2008.

Weart, R. Spencer. The Discovery of Global Warming; The Public and Climate Change: Suspicions of a Human-Caused Greenhouse (1956 – 1969). // American Institute of Physics, February 2014.

Whitehead D (2020) Management of Grazed Landscapes to Increase Soil Carbon Stocks in Temperate, Dryland Grasslands. Front. Sustain. Food Syst. 4:585913. doi: 10.3389/fsufs.2020.585913

Woodward and Kelly, 1995 F.I. Woodward, C.K. Kelly The influence of CO2 concentration on stomatal density New Phytol., 131 (1995), pp. 311-327

Downloads

Published

2024-06-22

How to Cite

[1]
A. Sevov, G. Stanchev, V. Georgieva, L. Koleva-Valkova, and G. Komitov, “SEASONAL DYNAMIC IN CO2 ABSORPTION CAPACITIES OF NATURAL GRASSLANDS”, ETR, vol. 1, pp. 325–329, Jun. 2024, doi: 10.17770/etr2024vol1.8005.