Effects of Temperature, Substrate Concentration and pH on the Polycyclic Aromatic Hydrocarbon Pyrene Biodegradation by Arthrobacter sp. NJ5 Strain


  • I. Gailiūtė JSC „Biocentras”, Vilnius University, Institute of Biotechnology
  • G. Žėkaitė JSC „Biocentras”
  • V. Čipinytė JSC „Biocentras”
  • S. Grigiškis JSC „Biocentras”
  • G. Dienys Vilnius University, Institute of Biotechnology




Arthrobacter sp., biodegradation, pyrene, polycyclic aromatic hydrocarbons, (PAHs)


Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and may persist for extended periods of time. PAHs are one of the most important classes of persistent organic contaminants. High molecular weight (HMW) PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack. Until recently, only a few genera of bacteria have been isolated with the ability to utilize four-ring PAHs as sole carbon and energy sources. Because of the toxic, mutagenic, and carcinogenic characteristics of some, PAHs have been studied extensively by many scientists around the word. This paper presents research results, where 10 microbial strains belonging to genus Arthrobacter sp. and obtained from culture collection of JSC "Biocentras"were tested for the best biodegradation of HMW PAH pyrene. Pyrene degradation experiments were conducted in liquid mineral medium. Pyrene concentration was 0. 2 mg/mL at the beginning of degradation experiments. After 72 h incubation with ten Arthrobacter sp. strains, gas chromatography analysis revealed that highest pyrene degradation (19%) was reached by Arthrobacter sp. NJ5 strain. The effect of medium pH, pyrene concentration and temperature on the intensity of the degradation by the most active strain Arthrobacter NJ5 was investigated.


Download data is not yet available.


Abd-Elsalam H. E.; Hafez E. E.; Hussain A. A.; Ali A. G.; ElHanafy A. A. Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. American-Eurasian J. Agric & Environ. Sci., 5(1). 2009, pp. 31-38.

Shafiee, P.; Shojaosadati S. A. Biodegradation of polycyclic aromatic hydrocarbons by aerobic mixed bacterial culture isolated from hydrocarbon polluted soils. Iran J.Chem. Chem. Eng., 25(3). 2006, pp. 73-78.

Desai A.; Vyas P. Petroleum and hydrocarbon microbiology. Applied Microbiology. 2006.

Juhash A. L.; Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 45. 2000, pp. 57-88.

Mrozik A.; Piotrowska-Seget Z.; Labuzek S. Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12(1). 2003, pp. 15-25.

Sack U.; Heinze T. M.; Deck J.; Cerniglia C. E.; Martens R.; Zadrazil F.; Fritsche W. Applied and Environmental Microbiology, 63. 1997, nr. 63, pp. 3919-3925.

Lv J.; Shi R.; Cai Y.; Liu Y. Assesment of Polycyclic Aromatic Hydrocarbons (PAHs) Pollution in Soil of Suburbon Areas in Tianjin, China. Bull Environ Contam Toxicol, 85. 2010, pp. 5-9.

Foght J. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J. Mol Microbiol Biotechnol., 15. 2008, pp. 93-120.

Perra G.; Renzi M.; Guerranti C.; Focardi E. 2009. Polycyclic aromatic hydrocarbons pollution in sediments: distribution andsources in a lagoon system (Orbetello, Central Italy). Transit. Water Bull., 3(1). 2009, pp. 45-58.

Meharg A. A.; Wright J.; Osborn D. D. Polycyclic aromatic hydrocarbons (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environmental Pollution, 99. 1998, pp. 29-36.

Shuttlewoth K. L.; Cerniglia C. E.; Environmental aspects of PAH biodegradation. Applied Biochemistry and Biotechnology, 54. 1995, pp. 291-302.

Valentin L.; Lu-Chau T. A.; Lopez C.; Feijoo G.; Moreira M. T.; Lema J. M. Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 42. 2007, pp. 641-648.

Horng R. S.; Kuei C-H.; Chen W-C. Enhancement of aromatic hydrocarbon biodegradation by toluene and naphthalene degrading bacteria obtained from lake sediment: the effect of cosubstrates and cocultures. J. of Environmental Engineering, 135(9). 2009, pp. 854-860.

Owabor C. N.; Ogbeide S. E.; Susu A. A. Model simulation of biodegradation of polycyclic aromatic hydrocarbon in a microcosm. Int. J. Environ. Res., 4(4). 2010, pp. 807-816.

Kanaly R. A.; Harayama S. Biodegradation of high–molecularweight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182(8). 2000, pp. 2059-2067.

Seo J-S.; Keum Y-S.; Li Q. X.; Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public. Health, 6. 2009, pp. 278-309.

Hesham A.; E-L.; Alamri S. A.; Khan S.; Mahmound M. E.; Mahmound H. M. Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. African Journal of Biotechnology, 8(10). 2009, pp. 2218-2223.

Kanaly R. A.; Harayama S. Advances in the field of highmolecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbial Biotechnology, 3(2). 2010, pp. 136-164.

Li J-L; Chen B-H. Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials, 2. 2009, pp. 76- 94

Phale P. S.; Basu A. Metabolic diversity in bacterial degradation of aromatic compounds. Journal of Integrative Biology, 11(3). 2007, pp. 252-279.

Rodriguez S.; Bishop P. L. Enhancing the biodegradation of polycyclic aromatic hydrocarbons: effects of nonionic surfactant addition on biofilm function and structure. Journal of Environmental Engineering, 134(7). 2008, pp. 505-512.

Roy R.; Ray R.; Chowdhury R.; Bhattacharya P. Degradation of polyaromatic hydrocarbons by mixed culture isolated from oil contaminated soil- A bioprocess engineering study. Indian Journal of Biotechnology, 5. 2007, pp. 107-113.

Samanta S. K.; Singh O. V.; Jain R. K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremedation. Trends in Biotechnology, 20(6). 2002, pp. 243-248.

Zhao Z.; Wong J. W-C. Rapid biodegradation of benzo[a]pyrene by Bacillus subtilis BUM under thermophilic condition. Environmental Engineering Science, 27(11). 2010, pp. 939-945 Vazquez-Duhalt R.; Westlake D. W. S.; Fedorak P. M. Lignin peroxidaze oxidation of aromatic compouns in systems containing organic solvents. Applied and Environmental Microbiology, 60(2). 1994, pp. 459-466.

Xia, X.; Wang R. Effect of sediment particle size on polycyclic aromatic hydrocarbon biedegradation: importance of the sediment-water interface. Environmental Toxilogy and Chemistry, 27(1). 2008, pp. 119-125.

Haritash A. K.; Kaushik C. P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Of Hazardous material.,169. 2009, pp. 1-15.

Khanna G. P.; Goyal D.; Khanna S. Pyrene biodegradation by Bacillus spp. Isolated from coal tar-contaminated soil. Bioremedation Journal, 15(1). 2011, pp. 12-25.

Hasanuzzamana M.; Ueno A.; Ito H.; Ito Y.; Yamamoto Y.; Yumotoc I.; Okoyama H. Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration & Biodegradation, 59. 2007, pp. 40-43.

Zhang Z.; Zhaowei H.; Yang C.; Cuiqing M.; Tao F.; Xu P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresourse Technology, 102.2011, pp. 4111-4116.

Rentz J. A.; Alvarez P. J. J.; Schnoor J. L. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental Pollution, 151. 2007, pp. 669-677.

Heitkamp M. A.; Freeman J. P.; Miller D. W.; Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Applied and Environmental Microbiology 54(10). 1988, pp. 2556-2565.

Cerniglia C. E.; Gibson D. T. Aromatic Hydrocarbons: degradation by bacteria and fungi. pp. 209-216.

Mihelcic J. R.; Luthy R. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Applied and Environmental Microbiology, 54(5). 1988, pp. 1182-1187.

Sabljic A.; Gusten H.; Verhaa H.; Hermens J. QSAR modelling of soil sorbtion. Improvements and systematics of logKoc vs. logKow correlations. Chemosphere, 31. 1995, pp. 4489-4514.

Fan S.; Li P.; Gang Z.; Ren W.; He N.; Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere, 71. 2008, pp. 1593-1598.


Aruzlazhagan P.; Vasudevan N.; Yeom I. T. Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Tech., 7(4). 2010, pp. 639-652.

Hurst C. J.; Sims R. C.; Sims J. L.; Sorensen D. L.; Mclean J. E.; Hulling S. Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soil. Proceedings of the 10th Annual Conference on Hazardous Waste Research.

Okoh A. I. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology review, 2. 2006, pp. 38-50.

Čipinytė V.; Grigiškis S. Naftą skaidančių mikroorganizmų atranka. Cheminė Technologija, 2(15) 2000.




How to Cite

I. Gailiūtė, G. Žėkaitė, V. Čipinytė, S. Grigiškis, and G. Dienys, “Effects of Temperature, Substrate Concentration and pH on the Polycyclic Aromatic Hydrocarbon Pyrene Biodegradation by Arthrobacter sp. NJ5 Strain”, ETR, vol. 1, pp. 23–27, Aug. 2015, doi: 10.17770/etr2013vol1.804.