TECHNICAL METHODS OF CLEANING SHIPWRECKS FROM GHOST NETS

Authors

  • Astrida Rijkure University of Latvia (LV)
  • Janis Megnis Riga Technical University (LV)

DOI:

https://doi.org/10.17770/etr2024vol3.8160

Keywords:

gostnets, blue economy, underwater robots, sustainable

Abstract

Ghost nets are fishing gear lost and left in bodies of water that continue to be fished. Most of the fishing gear that is lost is made of synthetic materials that break down very slowly or not at all in nature and continue to work long after the net is lost. A ghost net drifts in the sea until it catches on an object, most often a shipwreck. This harms both nature and people's economic interests. Currently, the release of shipwrecks and other sunken objects from fragments of lost nets is mainly done by human hands, resp. divers dive to the wreck and use hand tools to free the wreck from fragments of fishing gear. There are innovative robotic systems in the world that can partially replace the work of divers.

 

Downloads

Download data is not yet available.

References

Gong Z, Chen B, Liu J, Fang X, Liu Z, Wang T and Wen L (2019) An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water. Front. Robot. AI 6:26. doi: 10.3389/frobt.2019.00026

Fernandez, J. J., Prats, M., Sanz, P. J., and Garcia, J. C. (2013). Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention. IEEE Robot. Automat. Magaz. 20, 121–130. doi: 10.1109/MRA.2013.2248307

Duc-Anh Pham, Seung-Hun Han, (2023), Journal of Marine Science and Engineering, 11(12), 2312; https://doi.org/10.3390/jmse11122312 Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm

Healey, A.J.; Lienard, D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 1993, 18, 327–339.

Willcox, S.; Goldberg, D.; Vaganay, J.; Curcio, J. Multi-vehicle cooperative navigation and autonomy with the bluefin CADRE system. In Proceedings of the IFAC (International Federation of Automatic Control) Conference, Heidelberg, Germany, 15 September 2006; pp. 20–22.

Benzon, M.; Sorensen, F.; Liniger, J.; Pedersen, S.; Klemmensen, S.; Schmidt, K. Integral Sliding Mode control for a marine growth removing ROV with water jet disturbance. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 June–2 July 2021.

Pedersen, S.; Liniger, J.; Sørensen, F.F.; Schmidt, K.; Benzon, M.v.; Klemmensen, S.S. Stabilization of a ROV in three-dimensional space using an underwater acoustic positioning system. IFAC-PapersOnLine 2019, 52, 117–122.

Kuhn, V.N.; Drews Jr, P.L.J.; Gomes, S.C.P.; Cunha, M.A.B.; Botelho, S.S.d.C. Automatic control of a ROV for inspection of underwater structures using a low-cost sensing. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 361–374.

Eslami, M.; Chin, C.S.; Nobakhti, A. Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances. J. Mar. Sci. Appl. 2019, 18, 213–227.

Keviczky, T.; Borrelli, F.; Fregene, K.; Godbole, D.; Balas, G.J. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations. IEEE Trans. Control Syst. Technol. 2008, 16, 19–33.

Selvakumar, J.; Selvakumar, J.; Asokan, T.; Asokan, T. Station keeping control of underwater robots using disturbance force measurements. J. Mar. Sci. Technol. 2016, 21, 70–85.

Benzon M., Sørensen F.F., Uth E., Jouffroy J., Liniger J., Sørensen F.F., An Open-Source Benchmark Simulator: Control of a BlueROV2 Underwater Robot, J. Mar. Sci. Eng. 2022, 10(12), 1898; https://doi.org/10.3390/jmse10121898

Willners, J.S.; Carlucho, I.; Luczy’nski, T.; Katagiri, S.; Lemoine, C.; Roe, J.; Stephens, D.W.; Xu, S.J.; Carreno, Y.; Pairet, È.; et al. From market-ready ROVs to low-cost AUVs. In Proceedings of the OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–7.

Robotics, B. BlueROV2: The World’s Most Affordable High-Performance ROV. In BlueROV2 Datasheet; Blue Robotics: Torrance, CA, USA, June 2016.

Wilby, A.; Lo, E. Low-Cost, Open-Source Hovering Autonomous Underwater Vehicle (HAUV) for Marine Robotics Research based on the BlueROV2. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

Chua, A.; MacNeill, A.; Wallace, D. Democratizing ocean technology: Low-cost innovations in underwater robotics. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 10190.

Manzanilla, A.; Reyes, S.; Garcia, M.; Mercado, D.; Lozano, R. Autonomous navigation for unmanned underwater vehicles: Real-time experiments using computer vision. IEEE Robot. Autom. Lett. 2019, 4, 1351–1356.

Manhães, M.M.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based package for underwater intervention and multi-robot simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; IEEE: Piscataway, NJ, USA, 2016.

Cerqueira Gava, P.D.; Nascimento Júnior, C.L.; Belchior de França Silva, J.R.; Adabo, G.J. Simu2VITA: A General Purpose Underwater Vehicle Simulator. Sensors 2022, 22, 3255.

Potokar, E.; Ashford, S.; Kaess, M.; Mangelson, J. HoloOcean: An Underwater Robotics Simulator. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022.

Bogue, R. Robots in the offshore oil and gas industries: A review of recent developments. Ind. Robot 2020, 47, 1–6.

Rofallski, R.; Tholen, C.; Helmholz, P.; Parnum, I.; Luhmann, T. Measuring artificial reefs using a multi-camera system for unmanned underwater vehicles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2020, 43, 999–1008.

Pedersen, S.; Liniger, J.; Sørensen, F.F.; von Benzon, M. On Marine Growth Removal on Offshore Structures. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; pp. 1–6.

Liniger, J.; Jensen, A.L.; Pedersen, S.; Sørensen, H.; Mai, C. On the Autonomous Inspection and Classification of Marine Growth on Subsea Structures. In Proceedings of the 2022 OCEANS Conference & Exposition, Oceans 2022, Chennai, Chennai, India, 21–24 February 2022; IEEE Press: Piscataway, NJ, USA, 2022.

Boogaard, F.; de Lima, R.; de Graaf, R. Innovative water quality and ecology monitoring using underwater unmanned vehicles: Field applications, challenges and feedback from water managers. Water 2020, 12, 1196.

Wang, Y.; Thanyamanta, W.; Bulger, C.; Bose, N. Experimental study to make gas bubbles as proxies for oil droplets to test AUV detection of oil plumes. Appl. Ocean Res. 2022, 121, 103080.

Betancourt, J.; Coral, W.; Colorado, J. An integrated ROV solution for underwater net-cage inspection in fish farms using computer vision. SN Appl. Sci. 2020, 2, 1946.

Downloads

Published

2024-06-22

How to Cite

[1]
A. Rijkure and J. Megnis, “TECHNICAL METHODS OF CLEANING SHIPWRECKS FROM GHOST NETS”, ETR, vol. 3, pp. 253–256, Jun. 2024, doi: 10.17770/etr2024vol3.8160.