STATE OF THE ART AND LITERATURE REVIEW RESEARCH OF HOLLOW NANOFIBERS: FOCUSING ON FABRICATION, CAD IMPLEMENTATION AND OPTIMISATION

Authors

  • Sai Pavan Kanukuntla Department of theoretical mechanics and strength of materials, Riga Technical University (LV)

DOI:

https://doi.org/10.17770/etr2024vol3.8165

Keywords:

Hollow nanofibers, Electrospinning process, Computer aided analyis

Abstract

The introduction of nanotechnology has resulted in a new era of materials research, with hollow nanofibers emerging as a key innovation. These nanofibers, distinguished by their nano size diameters and hollow structures, have generated significant interest due to their potential applications in a variety of industries. However, despite their advantageous properties, manufacture and analysis of these hollow nanofibers face significant challenges, particularly in terms of mechanical stability and structural integrity when subjected to external stresses. Identifying and addressing these vulnerabilities is crucial for the advancement of hollow nanofibers in various industrial and biomedical fields. The production of hollow nanofibers, notably via the electrospinning technique, has been the topic of a great deal of research. One of the bases of this research is the utilization of computer-aided analysis (CAD) simulations, which include techniques such as Representative Volume Element (RVE) analysis, Finite Element Method (FEM), multiscale analysis, numerical simulation, and optimization strategies. These sophisticated tools offer a magnified view into the nano-structural behaviour of hollow nanofibers, enabling precise predictions about their mechanical properties and behaviours under diverse conditions. This approach is revolutionary, as it allows for the exploration of theoretical and practical aspects of material behaviours without the constraints of traditional experimental methodologies. This article is in-depth scientific review on these theoretical and practical aspects.


Supporting Agencies
This research was supported by Riga technical University’s DAD2 grant Project no. 2-04121.

Downloads

Download data is not yet available.

References

M. A. Haghighat Bayan, F. Afshar Taromi, M. Lanzi, and F. Pierini, “Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-00580-4.

X. Chen et al., “Advanced functional nanofibers: strategies to improve performance and expand functions,” Front. Optoelectron., vol. 15, no. 1, pp. 1–19, 2022, doi: 10.1007/s12200-022-00051-2.

M. Yousefzadeh and F. Ghasemkhah, “Design of Porous, Core-Shell, and Hollow Nanofibers BT - Handbook of Nanofibers,” A. Barhoum, M. Bechelany, and A. S. H. Makhlouf, Eds., Cham: Springer International Publishing, 2019, pp. 1–58. doi: 10.1007/978-3-319-42789-8_9-2.

S. Ang, J. R. Narayanan, W. Kargupta, V. Haritos, and W. Batchelor, “Cellulose nanofiber diameter distributions from microscopy image analysis: effect of measurement statistics and operator,” Cellulose, vol. 27, no. 8, pp. 4189–4208, 2020, doi: 10.1007/s10570-020-03058-0.

M. A. Haghighat Bayan, F. Afshar Taromi, M. Lanzi, and F. Pierini, “Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells.,” Sci. Rep., vol. 11, no. 1, p. 21144, Oct. 2021, doi: 10.1038/s41598-021-00580-4.

V. S. Reddy et al., “A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices.,” Polymers (Basel)., vol. 13, no. 21, Oct. 2021, doi: 10.3390/polym13213746.

D. Wang, A. Eychmüller, and Y. Sun, “Hollow Nanostructures,” ChemNanoMat, vol. 6, no. 10, pp. 1419–1420, 2020, doi: 10.1002/cnma.202000408.

M. Wang, K. Wang, Y. Yang, Y. Liu, and D. G. Yu, “Electrospun environment remediation nanofibers using unspinnable liquids as the sheath fluids: A review,” Polymers (Basel)., vol. 12, no. 1, 2020, doi: 10.3390/POLYM12010103.

Y. Zhang, Z. He, H. Wang, L. Qi, G. Liu, and X. Zhang, “Applications of hollow nanomaterials in environmental remediation and monitoring: A review,” Front. Environ. Sci. Eng., vol. 9, no. 5, pp. 770–783, 2015, doi: 10.1007/s11783-015-0811-0.

Z. Li et al., “Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review.,” Pharmaceutics, vol. 12, no. 6, Jun. 2020, doi: 10.3390/pharmaceutics12060522.

B. Singh, K. Kim, and M.-H. Park, “On-Demand Drug Delivery Systems Using Nanofibers.,” Nanomater. (Basel, Switzerland), vol. 11, no. 12, Dec. 2021, doi: 10.3390/nano11123411.

P. Prabhu, Nanofibers for Medical Diagnosis and Therapy. 2019. doi: 10.1007/978-3-319-53655-2_48.

L. Pengchao, G. Jing-Hua, Y. Shuguang, M. Jinghong, and X. Jian, “Research Progress on the Preparation of Ceramic Hollow Nanofibers by Electrospinning,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:136439044

N. Banitaba, G. Amini, A. Gharehaghaji, and A.-A. Jeddi, “Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications,” Fibers Polym., vol. 18, pp. 2342–2348, Dec. 2017, doi: 10.1007/s12221-017-1009-9.

H. Li et al., “Application of Electrospun Hollow Nanofibers in Catalysis,” Gaodeng Xuexiao Huaxue Xuebao/Chemical J. Chinese Univ., vol. 44, no. 1, pp. 1–19, 2023, doi: 10.7503/cjcu20220625.

R. Liu et al., “Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers,” Adv. Fiber Mater., vol. 4, no. 4, pp. 604–630, 2022, doi: 10.1007/s42765-022-00132-z.

J. Liu et al., “Multi-Structure Hollow Nanofibers: Controlled Synthesis and Photocatalytic Applications,” ChemNanoMat, vol. 6, no. 8, pp. 1149–1163, 2020, doi: 10.1002/cnma.202000170.

K. Huang, Y. Sun, Y. Zhang, X. Wang, W. Zhang, and S. Feng, “Hollow-Structured Metal Oxides as Oxygen-Related Catalysts,” Adv. Mater., vol. 31, no. 38, pp. 1–12, 2019, doi: 10.1002/adma.201801430.

K. Daehn, R. Basuhi, J. Gregory, M. Berlinger, V. Somjit, and E. A. Olivetti, “Innovations to decarbonize materials industries,” Nat. Rev. Mater., vol. 7, no. 4, pp. 275–294, 2022, doi: 10.1038/s41578-021-00376-y.

H. Wang, H. Cai, B. Chen, and C. Mao, “Research on core-shell nanofiber self-healing composites for structural applications,” Polym. Compos., vol. 42, no. 7, pp. 3281–3292, 2021, doi: 10.1002/pc.26058.

X. Wang, Y. Yuan, X. Huang, and T. Yue, “Controlled release of protein from core-shell nanofibers prepared by emulsion electrospinning based on green chemical,” J. Appl. Polym. Sci., vol. 132, no. 16, pp. 1–9, 2015, doi: 10.1002/app.41811.

A. Manuscript et al., “RSC Advances”.

Z. Lu, Q. Zhou, Z. Wei, L. Xu, S. Peng, and W. Zeng, “Synthesis of Hollow Nanofibers and Application on Detecting SF6 Decomposing Products,” Front. Mater., vol. 6, no. July, pp. 1–7, 2019, doi: 10.3389/fmats.2019.00183.

T. Kobori, S. Iwamoto, K. Takeyasu, and T. Ohtani, “Biopolymers Volume 85 / Number 4 295,” Biopolymers, vol. 85, no. 4, pp. 392–406, 2007, doi: 10.1002/bip.

L. Sun, L. Zhang, J. Wang, Y. Liu, and Y. Guo, “Fabrication of novel multilayer core-shell structured nanofibers network reinforced carbon matrix composites for bone tissue engineering,” Mater. Lett., vol. 333, no. November 2022, p. 133634, 2023, doi: 10.1016/j.matlet.2022.133634.

M. F. Abdullah, T. Nuge, A. Andriyana, B. C. Ang, and F. Muhamad, “Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery.,” Polymers (Basel)., vol. 11, no. 12, Dec. 2019, doi: 10.3390/polym11122008.

Q. Wang et al., “Self-Healing Coatings Containing Core–Shell Nanofibers with pH-Responsive Performance,” ACS Appl. Mater. Interfaces, vol. 13, no. 2, pp. 3139–3152, Jan. 2021, doi: 10.1021/acsami.0c18933.

X. Chen et al., “Advanced functional nanofibers: strategies to improve performance and expand functions.,” Front. Optoelectron., vol. 15, no. 1, p. 50, Dec. 2022, doi: 10.1007/s12200-022-00051-2.

D. Ji et al., “Electrospinning of nanofibres,” Nat. Rev. Methods Prim., vol. 4, no. 1, p. 1, 2024, doi: 10.1038/s43586-023-00278-z.

H. He et al., “Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers,” Nat. Commun., vol. 13, no. 1, pp. 1–8, 2022, doi: 10.1038/s41467-022-31957-2.

F. Liang et al., “Fast Energy Storage of SnS2 Anode Nanoconfined in Hollow Porous Carbon Nanofibers for Lithium-Ion Batteries,” Adv. Sci., vol. 11, no. 4, pp. 1–9, 2024, doi: 10.1002/advs.202306711.

Z. Ma et al., “Nanoconfined Expansion Behavior of Hollow MnS@Carbon Anode with Extended Lithiation Cyclic Stability,” Adv. Funct. Mater., vol. 33, no. 28, 2023, doi: 10.1002/adfm.202301112.

H. S. Lau and W. F. Yong, “Recent progress and prospects of polymeric hollow fiber membranes for gas application, water vapor separation and particulate matter removal,” J. Mater. Chem. A, vol. 9, no. 47, pp. 26454–26497, 2021, doi: 10.1039/D1TA07093B.

R. Naim, G. P. Sean, Z. Nasir, N. M. Mokhtar, and N. A. S. Muhammad, “Recent progress and challenges in hollow fiber membranes for wastewater treatment and resource recovery,” Membranes (Basel)., vol. 11, no. 11, pp. 1–15, 2021, doi: 10.3390/membranes11110839.

A. Tawari and B. Brika, “Hollow-fine-fibre Membranes: Collapse Pressure and Pressure Drop Analysis,” Chemist, vol. 93, pp. 1–17, Apr. 2022.

Y. R. Pei, M. Zhao, H. Y. Zhou, C. C. Yang, and Q. Jiang, “Hollow N-doped carbon nanofibers provide superior potassium-storage performance,” Nanoscale Adv., vol. 2, no. 9, pp. 4187–4198, 2020, doi: 10.1039/d0na00585a.

J. Xiao et al., “Interfacial Polarization Loss Improvement Induced by the Hollow Engineering of Necklace-like PAN/Carbon Nanofibers for Boosted Microwave Absorption,” Adv. Funct. Mater., vol. n/a, no. n/a, p. 2316722, Feb. 2024, doi: https://doi.org/10.1002/adfm.202316722.

G. Lee, J.-C. Song, and K.-B. Yoon, “Controlled Wall Thickness and Porosity of Polymeric Hollow Nanofibers by Coaxial Electrospinning,” Macromol. Res., vol. 18, pp. 571–576, Jun. 2010, doi: 10.1007/s13233-010-0607-9.

B.-S. Lee, K.-M. Park, W.-R. Yu, and J. Youk, “An effective method for manufacturing hollow carbon nanofibers and microstructural analysis,” Macromol. Res., vol. 20, Jun. 2012, doi: 10.1007/s13233-012-0087-1.

J. Zhao et al., “One-Step Fabrication of Fe(OH)(3)@Cellulose Hollow Nanofibers with Superior Capability for Water Purification.,” ACS Appl. Mater. Interfaces, vol. 9, no. 30, pp. 25339–25349, Aug. 2017, doi: 10.1021/acsami.7b07038.

A. Kromik, Z. Javanbakht, B. Miller, I. Underhill, and W. Hall, “On the Effects of Anisotropy in Detecting Flaws of Fibre-Reinforced Composites,” Appl. Compos. Mater., vol. 30, no. 1, pp. 21–39, 2023, doi: 10.1007/s10443-022-10067-8.

J. Beaugrand, S. Guessasma, and J. E. Maigret, “Damage mechanisms in defected natural fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017, doi: 10.1038/s41598-017-14514-6.

K. Tosun-Felekoğlu, B. Felekoğlu, R. Ranade, B. Y. Lee, and V. C. Li, “The role of flaw size and fiber distribution on tensile ductility of PVA-ECC,” Compos. Part B-engineering, vol. 56, pp. 536–545, 2014, [Online]. Available: https://api.semanticscholar.org/CorpusID:136835449

Z. Xiang, H. Wang, S. K. Murugappan, S. C. Yen, G. Pastorin, and C. Lee, “Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume,” J. Micromechanics Microengineering, vol. 25, no. 2, p. 25013, 2015, doi: 10.1088/0960-1317/25/2/025013.

J.-V. Sanchaniya, S.-P. Kanukuntla, A. Shereef, and J. Kaneps, “Modelling and analysis of composite polyacrylonitrile nanofiber mats utilized to strengthen motorbike side panel,” 21st Int. Sci. Conf. Eng. Rural Dev. Proc., vol. 21, pp. 727–736, 2022, doi: 10.22616/erdev.2022.21.tf226.

J. V. Sanchaniya, S. P. Kanukuntla, and K. B. Senyurt, “Fabrication and Mechanical Properties of Polymer Composite Nanofiber Mats,” Eng. Rural Dev., vol. 22, pp. 85–90, 2023, doi: 10.22616/ERDev.2023.22.TF014.

I. Lasenko et al., “The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibers,” Polymers (Basel)., vol. 15, no. 3, 2023, doi: 10.3390/polym15030673.

I. Lasenko, D. Grauda, D. Butkauskas, J. V. Sanchaniya, A. Viluma-Gudmona, and V. Lusis, “Testing the Physical and Mechanical Properties of Polyacrylonitrile Nanofibers Reinforced with Succinite and Silicon Dioxide Nanoparticles,” Textiles, vol. 2, no. 1, pp. 162–173, 2022, doi: 10.3390/textiles2010009.

S. N. Banitaba, G. Amini, A. A. Gharehaghaji, and A. A. A. Jeddi, “Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications,” Fibers Polym., vol. 18, no. 12, pp. 2342–2348, 2017, doi: 10.1007/s12221-017-1009-9.

G. Zhu, L. Zhao, L. Zhu, X. Deng, and W. Chen, “Effect of Experimental Parameters on Nanofiber Diameter from Electrospinning with Wire Electrodes,” IOP Conf. Ser. Mater. Sci. Eng., vol. 230, p. 12043, Sep. 2017, doi: 10.1088/1757-899X/230/1/012043.

O. Hardick, B. Stevens, and D. G. Bracewell, “Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency,” J. Mater. Sci., vol. 46, no. 11, pp. 3890–3898, 2011, doi: 10.1007/s10853-011-5310-5.

M. T. Demeuse, Production and applications of hollow fibers, vol. 2. Woodhead Publishing Limited, 2009. doi: 10.1533/9781845697310.3.485.

Y. Tian, Z. Wang, and L. Wang, “Hollow Fibers: From Fabrication to Applications,” Chem. Commun., vol. 57, Sep. 2021, doi: 10.1039/D1CC02991F.

I. O. Oladele, T. F. Omotosho, and A. A. Adediran, “Polymer-Based Composites: An Indispensable Material for Present and Future Applications,” Int. J. Polym. Sci., vol. 2020, 2020, doi: 10.1155/2020/8834518.

H.-M. Huang, “Medical Application of Polymer-Based Composites.,” Polymers, vol. 12, no. 11. Switzerland, Oct. 2020. doi: 10.3390/polym12112560.

F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview,” J. Compos. Mater., vol. 40, no. 17, pp. 1511–1575, 2006, doi: 10.1177/0021998306067321.

D. Venkatesan, J. Aravind Kumar, and R. Mohana Prakash, “Synthesis, Properties, and Applications of Polymer Nanocomposite Matrices BT - Handbook of Polymer and Ceramic Nanotechnology,” C. M. Hussain and S. Thomas, Eds., Cham: Springer International Publishing, 2021, pp. 465–485. doi: 10.1007/978-3-030-40513-7_65.

J. Avossa, G. Herwig, C. Toncelli, F. Itel, and R. M. Rossi, “Electrospinning based on benign solvents: current definitions, implications and strategies,” Green Chem., vol. 24, no. 6, pp. 2347–2375, 2022, doi: 10.1039/d1gc04252a.

J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications.,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, Apr. 2019, doi: 10.1021/acs.chemrev.8b00593.

A. Keirouz et al., “The History of Electrospinning: Past, Present, and Future Developments,” Adv. Mater. Technol., vol. 8, no. 11, pp. 1–34, 2023, doi: 10.1002/admt.202201723.

J. V. Sanchaniya, I. Lasenko, V. Gobins, and A. Kobeissi, “A Finite Element Method for Determining the Mechanical Properties of Electrospun Nanofibrous Mats,” Polym., vol. 16, no. 6, p. 852, 2024.

E. Ewaldz, J. Randrup, and B. Brettmann, “Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions,” ACS Polym. Au, vol. 2, no. 2, pp. 108–117, 2022, doi: 10.1021/acspolymersau.1c00041.

A. Vaseashta and N. Bölgen, Electrospun Nanofibers: Principles, Technology and Novel Applications. 2022. doi: 10.1007/978-3-030-99958-2.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol., vol. 63, no. 15, pp. 2223–2253, 2003, doi: 10.1016/S0266-3538(03)00178-7.

H. Il Ryu, M. S. Koo, S. Kim, S. Kim, Y. A. Park, and S. M. Park, “Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-77985-0.

J. V Sanchaniya and S. Kanukuntla, “Morphology and mechanical properties of PAN nanofiber mat,” J. Phys. Conf. Ser., vol. 2423, no. 1, p. 012018, 2023, doi: 10.1088/1742-6596/2423/1/012018.

J. V. Sanchaniya, I. Lasenko, S. P. Kanukuntla, A. Mannodi, A. Viluma-Gudmona, and V. Gobins, “Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers,” Nanomaterials, vol. 13, no. 13, 2023, doi: 10.3390/nano13131949.

Y. Yan, X. Liu, J. Yan, C. Guan, and J. Wang, “Electrospun Nanofibers for New Generation Flexible Energy Storage,” Energy Environ. Mater., vol. 4, no. 4, pp. 502–521, 2021, doi: 10.1002/eem2.12146.

A. Nadaf et al., “Recent update on electrospinning and electrospun nanofibers: current trends and their applications,” RSC Adv., vol. 12, no. 37, pp. 23808–23828, 2022, doi: 10.1039/d2ra02864f.

Y. Wang, T. Yokota, and T. Someya, “Electrospun nanofiber-based soft electronics,” NPG Asia Mater., vol. 13, no. 1, 2021, doi: 10.1038/s41427-020-00267-8.

P. R. Ilango et al., “Electrospun Flexible Nanofibres for Batteries: Design and Application,” Electrochem. Energy Rev., vol. 6, no. 1, p. 12, 2023, doi: 10.1007/s41918-022-00148-4.

Y. Zhou, Y. Liu, M. Zhang, Z. Feng, D. G. Yu, and K. Wang, “Electrospun Nanofiber Membranes for Air Filtration: A Review,” Nanomaterials, vol. 12, no. 7, 2022, doi: 10.3390/nano12071077.

Y. Salkovskiy and A. Fadeev, “High-efficiency retention of ultrafine aerosols by electrospun nanofibers,” Sci. Rep., vol. 12, no. 1, pp. 1–9, 2022, doi: 10.1038/s41598-022-24739-9.

R. Senthil, V. Sumathi, A. Tamilselvi, S. B. Kavukcu, and A. W. Aruni, “Functionalized electrospun nanofibers for high efficiency removal of particulate matter,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022, doi: 10.1038/s41598-022-12505-w.

T. Wang et al., “Electrospun Carbon Nanofibers and Their Applications in Several Areas,” ACS Omega, vol. 8, no. 25, pp. 22316–22330, 2023, doi: 10.1021/acsomega.3c01114.

M. K. Gaydhane, C. S. Sharma, and S. Majumdar, “Electrospun nanofibres in drug delivery: advances in controlled release strategies,” RSC Adv., vol. 13, no. 11, pp. 7312–7328, 2023, doi: 10.1039/d2ra06023j.

S. Homaeigohar, Y. Davoudpour, Y. Habibi, and M. Elbahri, “The electrospun ceramic hollow nanofibers,” Nanomaterials, vol. 7, no. 11, 2017, doi: 10.3390/nano7110383.

P. Mankotia, K. Sharma, V. Sharma, R. Sehgal, and V. Kumar, “Polymer and Ceramic-Based Hollow Nanofibers via Electrospinning,” 2021, pp. 223–250. doi: 10.1007/978-3-030-79979-3_9.

M. Schneider, “An algorithm for generating microstructures of fiber-reinforced composites with long fibers,” Int. J. Numer. Methods Eng., vol. 123, no. 24, pp. 6197–6219, 2022, doi: 10.1002/nme.7110.

D. Li and Y. Xia, “Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning,” Nano Lett., vol. 4, no. 5, pp. 933–938, May 2004, doi: 10.1021/nl049590f.

A. Barhoum, K. Pal, H. Rahier, H. Uludag, I. S. Kim, and M. Bechelany, “Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications,” Appl. Mater. Today, vol. 17, pp. 1–35, 2019, doi: 10.1016/j.apmt.2019.06.015.

S. Sheikhi, A. Ghassemi, S. M. Sajadi, and M. Hashemian, “Comparison of the mechanical characteristics of produced nanofibers by electrospinning process based on different collectors,” Heliyon, vol. 10, no. 1, p. e23841, 2024, doi: 10.1016/j.heliyon.2023.e23841.

Z. Li, B. Li, C. Yu, H. Wang, and Q. Li, “Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications,” Adv. Sci., vol. 10, no. 7, pp. 1–53, 2023, doi: 10.1002/advs.202206605.

S. P. Kanukuntla, J. V. Sanchaniya, U. Kardani, and V. Beresnevics, “Numerical Simulation of Polymeric Composite Nanofiber Mat,” Eng. Rural Dev., vol. 22, pp. 790–795, 2023, doi: 10.22616/ERDev.2023.22.TF156.

M. Yousefzadeh, Modeling and simulation of the electrospinning process. Elsevier Ltd., 2017. doi: 10.1016/B978-0-08-100907-9.00012-X.

S. M. Rahman, S. Gautam, H. V Tafreshi, and B. Pourdeyhimi, “The role of 3D electrostatic field in modeling the electrospinning process,” J. Appl. Phys., vol. 135, no. 1, p. 14701, Jan. 2024, doi: 10.1063/5.0187859.

Y. Guo, X. Wang, Y. Shen, K. Dong, L. Shen, and A. A. A. Alzalab, “Research progress, models and simulation of electrospinning technology: a review,” J. Mater. Sci., vol. 57, no. 1, pp. 58–104, 2022, doi: 10.1007/s10853-021-06575-w.

L. Zhou, S. Zhu, Z. Zhu, and X. Xie, “Simulations of Fractures of Heterogeneous Orthotropic Fiber-Reinforced Concrete with Pre-Existing Flaws Using an Improved Peridynamic Model,” Materials (Basel)., vol. 15, p. 3977, Jun. 2022, doi: 10.3390/ma15113977.

C. Nash, P. Karve, D. Adams, and S. Mahadevan, “Flaw Detection and Localization in Curing Fiber-Reinforced Polymer Composites Using Infrared Thermography and Kalman Filtering: A Simulation Study,” J. Nondestruct. Eval., vol. 40, no. 3, p. 78, 2021, doi: 10.1007/s10921-021-00802-9.

N. Kizildag, “Smart composite nanofiber mats with thermal management functionality,” Sci. Rep., vol. 11, no. 1, pp. 1–16, 2021, doi: 10.1038/s41598-021-83799-5.

X.-Q. Zhang, B. He, W.-C. Li, and A.-H. Lu, “Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes,” Nano Res., vol. 11, Aug. 2017, doi: 10.1007/s12274-017-1737-6.

W. Ye et al., “Constructing Hollow Nanofibers to Boost Electrochemical Performance: Insight into Kinetics and Li Storage Mechanism for CrNb49O124,” ACS Appl. Energy Mater., vol. 2, Mar. 2019, doi: 10.1021/acsaem.9b00010.

S. Gao, “Simulation of Mechanical NC Machining Based on CAD/CAM,” Comput. Aided. Des. Appl., vol. 21, no. S6, pp. 1–9, 2024, doi: 10.14733/cadaps.2024.S6.1-9.

M. Ali and M. Hussein, “Characterization and optimization of mechanical properties in design materials using convolutional neural networks and particle swarm optimization,” Asian J. Civ. Eng., vol. 25, no. 3, pp. 2443–2457, 2024, doi: 10.1007/s42107-023-00918-5.

B. Ghasemi Parvin and L. Ghasemi Parvin, Enhancing Mechanical Properties of Materials Using Artificial Intelligence. 2023. doi: 10.6084/m9.figshare.25180352.

F. Kibrete, T. Trzepieciński, H. S. Gebremedhen, and D. E. Woldemichael, “Artificial Intelligence in Predicting Mechanical Properties of Composite Materials,” J. Compos. Sci., vol. 7, no. 9, 2023, doi: 10.3390/jcs7090364.

J.-V. Sanchaniya, S.-P. Kanukuntla, P. Modappathi, and A. Macanovskis, “Mechanical behaviour numerical investigation of composite structure, Consisting of polymeric nanocomposite mat and textile,” 21st Int. Sci. Conf. Eng. Rural Dev. Proc., vol. 21, pp. 720–726, 2022, doi: 10.22616/erdev.2022.21.tf225.

J. V. Sanchaniya et al., “A Novel Method to Enhance the Mechanical Properties of Polyacrylonitrile Nanofiber Mats: An Experimental and Numerical Investigation,” Polymers (Basel)., vol. 16, no. 7, 2024, doi: 10.3390/polym16070992.

B. Qiu et al., “Nanofiber self-consistent additive manufacturing process for 3D microfluidics,” Microsystems Nanoeng., vol. 8, no. 1, 2022, doi: 10.1038/s41378-022-00439-2.

W.-M. Ji and M. Wu, “Nanoscale insights into the damage tolerance of Cantor alloys at cryogenic temperatures,” Int. J. Mech. Sci., vol. 226, p. 107406, May 2022, doi: 10.1016/j.ijmecsci.2022.107406.

R. O. Ritchie, “Toughening materials: Enhancing resistance to fracture,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 379, no. 2203, 2021, doi: 10.1098/rsta.2020.0437.

J. U. Surjadi and Y. Lu, “Design criteria for tough metamaterials,” Nat. Mater., vol. 21, no. 3, pp. 272–274, 2022, doi: 10.1038/s41563-022-01193-6.

Pandimani, M. R. Ponnada, and Y. Geddada, “Numerical nonlinear modeling and simulations of high strength reinforced concrete beams using ANSYS,” J. Build. Pathol. Rehabil., vol. 7, no. 1, p. 22, 2021, doi: 10.1007/s41024-021-00155-w.

S. Ahamed and V. Lawrence, A PC based CAD environment for fiber optic simulations, vol. 2. 1989. doi: 10.1109/GLOCOM.1989.64057.

R. Paschotta, “Fiber Simulation Software,” RP Photonics Encyclopedia. Mar. 19, 2024. doi: 10.61835/z8j.

R. L. Creighton, J. Phan, and K. A. Woodrow, “In situs 3D-patterning of electrospun fibers using two-layer composite materials,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020, doi: 10.1038/s41598-020-64846-z.

G. Marchesi, A. Camurri Piloni, V. Nicolin, G. Turco, and R. Di Lenarda, “Chairside CAD/CAM Materials: Current Trends of Clinical Uses.,” Biology (Basel)., vol. 10, no. 11, Nov. 2021, doi: 10.3390/biology10111170.

Q. Chen, L. Xu, C. Jing, T. Xue, A. Salo, and K. Ojala, “Flexible device and component reliability study using simulations,” in EuroSimE 2008 - International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008, pp. 1–5. doi: 10.1109/ESIME.2008.4525055.

A. Vukovic, E. Altinozen, T. Dimitrijevic, and P. Sewell, “Simulation Platform for Flexible Electronics,” in 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 2021, pp. 135–138. doi: 10.1109/TELSIKS52058.2021.9606324.

G. Scandurra, A. Arena, and C. Ciofi, “A Brief Review on Flexible Electronics for IoT: Solutions for Sustainability and New Perspectives for Designers,” Sensors, vol. 23, no. 11, 2023, doi: 10.3390/s23115264.

R. Prabhakaran, “Nanocomposites for Aircraft Applications,” J. Aerosp. Sci. Technol., pp. 169–185, Aug. 2023, doi: 10.61653/joast.v66i3.2014.452.

A. Bhat et al., “Review on nanocomposites based on aerospace applications,” Nanotechnol. Rev., vol. 10, no. 1, pp. 237–253, 2021, doi: 10.1515/ntrev-2021-0018.

J.-V. Sanchaniya, S.-P. Kanukuntla, A. Dutta, and V. Jevstignejevs, “Analysis of honeycomb structure evaluated in static and impact loading,” 21st Int. Sci. Conf. Eng. Rural Dev. Proc., vol. 21, pp. 745–753, 2022, doi: 10.22616/erdev.2022.21.tf228.

D. Bouyer, L. Vachoud, Y. Chakrabandhu, and C. Pochat-Bohatier, “Influence of mass transfer on gelation time using VIPS-gelation process for chitin dissolved in LiCl/NMP solvent-Modelling and experimental study,” Chem. Eng. J., vol. 157, no. 2–3, pp. 605–619, 2010, doi: 10.1016/j.cej.2010.01.037.

J. H. Panchal, S. R. Kalidindi, and D. L. McDowell, “Key computational modeling issues in Integrated Computational Materials Engineering,” CAD Comput. Aided Des., vol. 45, no. 1, pp. 4–25, 2013, doi: 10.1016/j.cad.2012.06.006.

R. Dingreville, R. A. Karnesky, G. Puel, and J.-H. Schmitt, “Review of the synergies between computational modeling and experimental characterization of materials across length scales,” J. Mater. Sci., vol. 51, no. 3, pp. 1178–1203, 2016, doi: 10.1007/s10853-015-9551-6.

T. E. Gartner, A. L. Ferguson, and P. G. Debenedetti, “Data-driven molecular design and simulation in modern chemical engineering,” Nat. Chem. Eng., vol. 1, no. 1, pp. 6–9, 2024, doi: 10.1038/s44286-023-00010-4.

P. Sinha, D. Roshini, V. Daoo, B. M. Abraham, and J. K. Singh, “Integrating Machine Learning and Molecular Simulation for Material Design and Discovery,” Trans. Indian Natl. Acad. Eng., vol. 8, no. 3, pp. 325–340, 2023, doi: 10.1007/s41403-023-00412-z.

Y. Liu et al., “Flexible hollow nanofibers: Novel one-pot electrospinning construction, structure and tunable luminescence-electricity-magnetism trifunctionality,” Chem. Eng. J., vol. 284, pp. 831–840, 2016, doi: 10.1016/j.cej.2015.09.030.

D. Seo et al., “Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium-Ion Batteries,” ChemElectroChem, vol. 9, no. 1, p. e202101344, Jan. 2022, doi: https://doi.org/10.1002/celc.202101344.

S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A Revolution in Modern Industry.,” Molecules, vol. 28, no. 2, Jan. 2023, doi: 10.3390/molecules28020661.

G. T. Jasion et al., “Recent Breakthroughs in Hollow Core Fiber Technology,” in 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, pp. 1–3.

D. Yadav, F. Amini, and A. Ehrmann, “Recent advances in carbon nanofibers and their applications – A review,” Eur. Polym. J., vol. 138, no. August, p. 109963, 2020, doi: 10.1016/j.eurpolymj.2020.109963.

H. Yuan, Q. Zhou, and Y. Zhang, Improving fiber alignment during electrospinning. Elsevier Ltd., 2017. doi: 10.1016/B978-0-08-100907-9.00006-4.

S. K. Vimal, N. Ahamad, and D. S. Katti, “A simple method for fabrication of electrospun fibers with controlled degree of alignment having potential for nerve regeneration applications,” Mater. Sci. Eng. C, vol. 63, pp. 616–627, 2016, doi: 10.1016/j.msec.2016.03.008.

Z. Long, L. Yuan, C. Shi, C. Wu, H. Qiao, and K. Wang, “Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage,” Adv. Compos. Hybrid Mater., vol. 5, no. 1, pp. 370–382, 2022, doi: 10.1007/s42114-021-00397-9.

M. Roya, M. Eifert, and E. Cosgriff-Hernandez, “Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology,” Tissue Eng. Part C. Methods, vol. 19, Mar. 2013, doi: 10.1089/ten.TEC.2012.0671.

D. Zhang, P. Davoodi, X. Li, Y. Liu, W. Wang, and Y. Y. S. Huang, “An empirical model to evaluate the effects of environmental humidity on the formation of wrinkled, creased and porous fibre morphology from electrospinning,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-74542-7.

L. Salama et al., “CFD SIMULATION IN HOLLOW FIBER AND TUBULAR MEMBRANES,” JP J. Heat Mass Transf., vol. 23, pp. 139–151, Jun. 2021, doi: 10.17654/HM023010139.

C. Ma et al., “CFD Simulations of Fiber-Fiber Interactions in a Hollow Fiber Membrane Bundle: Fiber Distance and Position Matters,” Sep. Purif. Technol., vol. 209, Sep. 2018, doi: 10.1016/j.seppur.2018.09.029.

Y. Su and G. Lipscomb, “Simulation of Hollow Fiber Spinning,” in ACS Symposium Series, vol. 1078, 2011, pp. 129–152. doi: 10.1021/bk-2011-1078.ch009.

J. Song, X. Lin, L. Y. Ee, S. F. Y. Li, and M. Huang, A Review on Electrospinning as Versatile Supports for

Diverse Nanofibers and Their Applications in Environmental Sensing, vol. 5, no. 2. Springer Nature Singapore, 2023. doi: 10.1007/s42765-022-00237-5.

G. B. Medeiros, F. de A. Lima, D. S. de Almeida, V. G. Guerra, and M. L. Aguiar, “Modification and Functionalization of Fibers Formed by Electrospinning: A Review.,” Membranes (Basel)., vol. 12, no. 9, Sep. 2022, doi: 10.3390/membranes12090861.

N. Ghane, S. Mazinani, and A. Gharehaghaji, “Fabrication and characterization of hollow nanofibrous PA6 yarn reinforced with CNTs,” J. Polym. Res., vol. 25, Mar. 2018, doi: 10.1007/s10965-018-1477-7.

L. I. Koroteeva, E. N. Khozina, and P. A. Korolev, “Determination of Mechanical Strength of Hollow-Fiber Membranes to Optimize Technological Processes,” Fibre Chem., vol. 53, no. 1, pp. 20–24, 2021, doi: 10.1007/s10692-021-10232-y.

H. Han et al., “Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries,” Nanoscale, vol. 11, no. 45, pp. 21999–22005, 2019, doi: 10.1039/C9NR07675A.

Y.-E. Miao, W. Fan, D. Chen, and T. Liu, “High-Performance Supercapacitors Based on Hollow Polyaniline Nanofibers by Electrospinning,” ACS Appl. Mater. Interfaces, vol. 5, Apr. 2013, doi: 10.1021/am4008352.

G. Anusiya and R. Jaiganesh, “A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers,” Carbohydr. Polym. Technol. Appl., vol. 4, no. November, p. 100262, 2022, doi: 10.1016/j.carpta.2022.100262.

S. Malik et al., “Sustainable nanofibers in tissue engineering and biomedical applications,” Mater. Des. Process. Commun., vol. 3, no. 6, p. e202, Dec. 2021, doi: https://doi.org/10.1002/mdp2.202.

M. Wang, Y. Wang, Y. Mo, Q. Gao, Y. Li, and J. Zhu, “Novel hollow α-Fe2O3 nanofibers with robust performance enabled multi-functional applications,” Environ. Res., vol. 212, p. 113459, May 2022, doi: 10.1016/j.envres.2022.113459.

W. Sang, R. Zhang, X. Shi, and Y. Dai, “Advanced Metallized Nanofibers for Biomedical Applications,” Adv. Sci., vol. 10, no. 27, pp. 1–18, 2023, doi: 10.1002/advs.202302044.

D. Sista, “New Perspective of Nano Fibers: Synthesis and Applications,” B. Kumar, Ed., Rijeka: IntechOpen, 2021, p. Ch. 1. doi: 10.5772/intechopen.97460.

Kenry and C. T. Lim, “Nanofiber technology: current status and emerging developments,” Prog. Polym. Sci., vol. 70, pp. 1–17, 2017, doi: 10.1016/j.progpolymsci.2017.03.002.

X. Chen et al., “Janus Hollow Nanofiber with Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Battery,” Small, vol. 18, no. 16, p. 2200578, Apr. 2022, doi: https://doi.org/10.1002/smll.202200578.

W. Jonkers, E. Cornelissen, J. Grooth, and W. Vos, “Hollow fiber nanofiltration: From lab-scale research to full-scale applications,” J. Memb. Sci., vol. 669, p. 121234, Dec. 2022, doi: 10.1016/j.memsci.2022.121234.

Downloads

Published

2024-06-22

How to Cite

[1]
S. P. Kanukuntla, “STATE OF THE ART AND LITERATURE REVIEW RESEARCH OF HOLLOW NANOFIBERS: FOCUSING ON FABRICATION, CAD IMPLEMENTATION AND OPTIMISATION”, ETR, vol. 3, pp. 114–122, Jun. 2024, doi: 10.17770/etr2024vol3.8165.