ANALYSIS OF THE FORMATION OF CAVITATION CAVITY DURING THE MOVEMENT OF A MODIFIED BULLET OF 7.62X39 AMMUNITION IN A WATER ENVIRONMENT

Authors

  • Blagovest Bankov Department of „Armament and Technology for Design“, National Military University “Vasil Levski” (BG)

DOI:

https://doi.org/10.17770/etr2024vol4.8191

Keywords:

Cavitation, CFD Analysis, 7.62x39 projectile, SolidWorks

Abstract

The report examines the behavior of a 7.62x39 bullet in a water environment and the changes in the created cavitation cavity when the geometric and mass characteristics are altered. The studies are conducted through virtual prototypes and CFD (Computational Fluid Dynamics) analyses in a SolidWorks environment, with the density of the water around the projectile and the angle of the formed cavitation cavities being the control parameters. The results indicate that the placement of the radial slit channel in the middle of the ogive part yields the best results for the angle of the cavitation cavity, which helps reduce the friction forces on the projectile, thereby increasing its linear progression in a water environment.
Supporting Agencies
The report is being carried out under the National Scientific Program "Security and Defense," adopted by Council of Ministers Decree № 731 of October 21, 2021, and in accordance with Agreement № D01-74/19.05.2022.

Downloads

Download data is not yet available.

References

V.-T. Nguyen, T.-H. Phan, and W.-G. Park, ‘Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model’, International Journal of Mechanical Sciences, vol. 182, p. 105726, Sep. 2020, doi: 10.1016/j.ijmecsci.2020.105726.

S. Liu, C. Xu, Y. Wen, S. Wang, J. Zhou, and X. Zhou, ‘Cavity dynamics in 10 wt% gelatin penetration of rifle bullet’, International Journal of Impact Engineering, vol. 122, pp. 296–304, Dec. 2018, doi: 10.1016/j.ijimpeng.2018.09.006.

G.-X. Yan, G. Pan, Y. Shi, L.-M. Chao, and D. Zhang, ‘Experimental and numerical investigation of water impact on air-launched AUVs’, Ocean Engineering, vol. 167, pp. 156–168, Nov. 2018, doi: 10.1016/j.oceaneng.2018.08.044.

Y. Sofronov, M. Zagorski, G. Todorov, and T. Gavrailov, ‘Approach for reverse engineering of complex geometry components’, presented at the BulTrans, Sozopol, Bulgaria, 2019.

S. Antonov, ‘Modern techologies in computer design and application of systems for stress-strain calculations of weapon system elementS’, presented at the International Conference knowledge-based organization, 2020.

K. Łukaszewicz, ‘Use of CAD Software in the Process of Virtual Prototyping of Machinery’, Procedia Engineering, vol. 182, pp. 425–433, 2017, doi: 10.1016/j.proeng.2017.03.127.

Y.-M. Huang and H.-Y. Lan, ‘CAD/CAE/CAM integration for increasing the accuracy of mask rapid prototyping system’, Computers in Industry, vol. 56, no. 5, pp. 442–456, Jun. 2005, doi: 10.1016/j.compind.2005.01.002.

A. Fischer, ‘Multi-level models for reverse engineering and rapid prototyping in remote CAD systems’, Computer-Aided Design, vol. 32, no. 1, pp. 27–38, Jan. 2000, doi: 10.1016/S0010-4485(99)00081-0.

K. Subburaj, C. Nair, S. Rajesh, S. M. Meshram, and B. Ravi, ‘Rapid development of auricular prosthesis using CAD and rapid prototyping technologies’, International Journal of Oral and Maxillofacial Surgery, vol. 36, no. 10, pp. 938–943, Oct. 2007, doi: 10.1016/j.ijom.2007.07.013.

V. Ganev, R. Lazarov, and B. Bankov, ‘Approach for determining the ballistic characteristics of the ammunition’, presented at the International Scientific Conference ―Defense Technologies, Shumen, 2023, pp. 285–289.

V. Ganev and B. Bankov, ‘Investigation of the motion of a 7,62x54 caliber projectile in an aquatic environment’, presented at the Актуални проблеми на сигурността, Велико Търново: Издателски комплекс на НВУ „Васил Левски”, 2023, pp. 1511–1516.

H. Fang and M. Duan, ‘Special Problems of Deep-Sea Oil and Gas Engineering’, in Offshore Operation Facilities, Elsevier, 2014, pp. 537–686. doi: 10.1016/B978-0-12-396977-4.00004-4.

P. Lichte, R. Oberbeck, M. Binnebösel, R. Wildenauer, H.-C. Pape, and P. Kobbe, ‘A civilian perspective on ballistic trauma and gunshot injuries’, Scand J Trauma Resusc Emerg Med, vol. 18, no. 1, p. 35, 2010, doi: 10.1186/1757-7241-18-35.

F. Magaletti, M. Gallo, and C. M. Casciola, ‘Water cavitation from ambient to high temperatures’, Sci Rep, vol. 11, no. 1, p. 20801, Oct. 2021, doi: 10.1038/s41598-021-99863-z.

F. Caupin and E. Herbert, ‘Cavitation in water: a review’, Comptes Rendus Physique, vol. 7, no. 9–10, pp. 1000–1017, Nov. 2006, doi: 10.1016/j.crhy.2006.10.015.

C. E. Brennen, Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2013. doi: 10.1017/CBO9781107338760.

D. H. Trevena, ‘Cavitation and the generation of tension in liquids’, J. Phys. D: Appl. Phys., vol. 17, no. 11, pp. 2139–2164, Nov. 1984, doi: 10.1088/0022-3727/17/11/003.

EOD, ‘7.62x39 green black tip factory 711’, International Ammunition Association, Inc. Accessed: Jan. 05, 2024. [Online]. Available: https://forum.cartridgecollectors.org/t/7-62x39-green-black-tip-factory-711/38421

Р. Лазаров, ‘Изследване на влиянието на формата на куршума върху рикошетното му действие’, НВУ ‘Васил Левски’, Велико Търново, 2022.

Министерство на народната отбрана, Наставление по стрелково дело. Материална част на стрелково оръжие. София: Военно издателство, 1987.

Я. Димитрова, ‘Изследване на влиянието на трибологичните характеристики на шумозаглушител върху групираността при стрелба със стрелково оръжие.’, НВУ “Васил Левски", Велико Търново, 2021.

Downloads

Published

2024-06-22

How to Cite

[1]
B. Bankov, “ANALYSIS OF THE FORMATION OF CAVITATION CAVITY DURING THE MOVEMENT OF A MODIFIED BULLET OF 7.62X39 AMMUNITION IN A WATER ENVIRONMENT”, ETR, vol. 4, pp. 32–36, Jun. 2024, doi: 10.17770/etr2024vol4.8191.