ANALYSIS OF THE INFLUENCE OF THE OGIVE RADIUS OF A 7.62X39 AMMUNITION BULLET ON THE CAVITATION CAVITY

Authors

  • Blagovest Bankov Department of „Armament and Technology for Design“, National Military University “Vasil Levski” (BG)

DOI:

https://doi.org/10.17770/etr2024vol4.8192

Keywords:

Cavitation, CFD Analysis, SolidWorks, 7.62x39 projectile

Abstract

The aim of the current study is to examine the impact of the ogive radius of a 7.62x39 ammunition projectile on the positioning of a radially-slotted channel that helps increase the angle of the cavitation cavity. The studies were conducted using CFD (Computational Fluid Dynamics) analyses in a SolidWorks environment, simulating the projectile's movement in a water environment. The research findings indicate that lower values of the ogive radius result in higher values of the cavitation cavity angle, which in turn suggests that lower values are more favorable for creating bullets with slotted channels, which enhances linear-progressive movement in a water environment and thus increases the chance of hitting targets below sea level.


Supporting Agencies
The report is being carried out under the National Scientific Program "Security and Defense," adopted by Council of Ministers Decree № 731 of October 21, 2021, and in accordance with Agreement № D01-74/19.05.2022.

Downloads

Download data is not yet available.

References

S. Antonov, ‘Modern techologies in computer design and application of systems for stress-strain calculations of weapon system elements’, presented at the International Conference knowledge-based organization, 2020.

Y. A. Hosni, ‘Contribution of CAD-CAM and reverse engineering technology to the biomedical field’, in Current Advances in Mechanical Design and Production VII, Elsevier, 2000, pp. 491–499. doi: 10.1016/B978-008043711-8/50050-7.

I. Kovács, T. Várady, and P. Salvi, ‘Applying geometric constraints for perfecting CAD models in reverse engineering’, Graphical Models, vol. 82, pp. 44–57, Nov. 2015, doi: 10.1016/j.gmod.2015.06.002.

K. Łukaszewicz, ‘Use of CAD Software in the Process of Virtual Prototyping of Machinery’, Procedia Engineering, vol. 182, pp. 425–433, 2017, doi: 10.1016/j.proeng.2017.03.127.

A. Raffo, O. J. D. Barrowclough, and G. Muntingh, ‘Reverse engineering of CAD models via clustering and approximate implicitization’, Computer Aided Geometric Design, vol. 80, p. 101876, Jun. 2020, doi: 10.1016/j.cagd.2020.101876.

D. W. Rosen, N. Jeong, and Y. Wang, ‘A method for reverse engineering of material microstructure for heterogeneous CAD’, Computer-Aided Design, vol. 45, no. 7, pp. 1068–1078, Jul. 2013, doi: 10.1016/j.cad.2013.01.004.

M. Rozesara, S. Ghazinoori, M. Manteghi, and S. H. Tabatabaeian, ‘A reverse engineering-based model for innovation process in complex product systems: Multiple case studies in the aviation industry’, Journal of Engineering and Technology Management, vol. 69, p. 101765, Jul. 2023, doi: 10.1016/j.jengtecman.2023.101765.

Y. Sofronov, M. Zagorski, G. Todorov, and T. Gavrailov, ‘Approach for reverse engineering of complex geometry components’, presented at the BulTrans, Sozopol, Bulgaria, 2019.

M. Zagorski, G. Todorov, N. Nikolov, Y. Sofronov, and M. Kandeva, ‘Investigation on wear of biopolymer parts produced by 3D printing in lubricated sliding conditions’, ILT, vol. 74, no. 3, pp. 360–366, Mar. 2022, doi: 10.1108/ILT-06-2021-0214.

B. S. Rupal, K. G. Mostafa, Y. Wang, and A. J. Qureshi, ‘A Reverse CAD Approach for Estimating Geometric and Mechanical Behavior of FDM Printed Parts’, Procedia Manufacturing, vol. 34, pp. 535–544, 2019, doi: 10.1016/j.promfg.2019.06.217.

J. A. Batlle and A. Barjau Condomines, Rigid Body Dynamics, 1st ed. Cambridge University Press, 2022. doi: 10.1017/9781108896191.

V.-T. Nguyen, T.-H. Phan, and W.-G. Park, ‘Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model’, International Journal of Mechanical Sciences, vol. 182, p. 105726, Sep. 2020, doi: 10.1016/j.ijmecsci.2020.105726.

S. Liu, C. Xu, Y. Wen, S. Wang, J. Zhou, and X. Zhou, ‘Cavity dynamics in 10 wt% gelatin penetration of rifle bullet’, International Journal of Impact Engineering, vol. 122, pp. 296–304, Dec. 2018, doi: 10.1016/j.ijimpeng.2018.09.006.

G.-X. Yan, G. Pan, Y. Shi, L.-M. Chao, and D. Zhang, ‘Experimental and numerical investigation of water impact on air-launched AUVs’, Ocean Engineering, vol. 167, pp. 156–168, Nov. 2018, doi: 10.1016/j.oceaneng.2018.08.044.

V. R. Feldgun, D. Z. Yankelevsky, and Y. S. Karinski, ‘Cavitation phenomenon in penetration of rigid projectiles into elastic-plastic targets’, International Journal of Impact Engineering, vol. 151, p. 103837, May 2021, doi: 10.1016/j.ijimpeng.2021.103837.

F. Magaletti, M. Gallo, and C. M. Casciola, ‘Water cavitation from ambient to high temperatures’, Sci Rep, vol. 11, no. 1, p. 20801, Oct. 2021, doi: 10.1038/s41598-021-99863-z.

F. Caupin and E. Herbert, ‘Cavitation in water: a review’, Comptes Rendus Physique, vol. 7, no. 9–10, pp. 1000–1017, Nov. 2006, doi: 10.1016/j.crhy.2006.10.015.

C. E. Brennen, Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2013. doi: 10.1017/CBO9781107338760.

D. H. Trevena, ‘Cavitation and the generation of tension in liquids’, J. Phys. D: Appl. Phys., vol. 17, no. 11, pp. 2139–2164, Nov. 1984, doi: 10.1088/0022-3727/17/11/003.

J. S. Carlton, ‘Cavitation’, in Marine Propellers and Propulsion, Elsevier, 2012, pp. 209–250. doi: 10.1016/B978-0-08-097123-0.00009-5.

J. Hua et al., ‘Recent development of a CFD-wind tunnel correlation study based on CAE-AVM investigation’, Chinese Journal of Aeronautics, vol. 31, no. 3, pp. 419–428, Mar. 2018, doi: 10.1016/j.cja.2018.01.017.

R. Molinaro, J.-S. Singh, S. Catsoulis, C. Narayanan, and D. Lakehal, ‘Embedding data analytics and CFD into the digital twin concept’, Computers & Fluids, vol. 214, p. 104759, Jan. 2021, doi: 10.1016/j.compfluid.2020.104759.

E. Henrikson, P. Wood, and K. Hanna, ‘Utilization of integrated CAD/CAE computational fluid dynamic tools in the golf driver design process’, Procedia Engineering, vol. 34, pp. 68–73, 2012, doi: 10.1016/j.proeng.2012.04.013.

S. Aram and P. Mucha, ‘CFD validation and analysis of turning maneuvers of a surface combatant in regular waves’, Ocean Engineering, vol. 293, p. 116653, Feb. 2024, doi: 10.1016/j.oceaneng.2023.116653.

G. Todorov, K. Kamberov, and T. Ivanov, ‘Parametric optimisation of resistance temperature detector design using validated virtual prototyping approach’, Case Studies in Thermal Engineering, vol. 28, p. 101302, Dec. 2021, doi: 10.1016/j.csite.2021.101302.

F. Orlandi, L. Montorsi, and M. Milani, ‘Cavitation analysis through CFD in industrial pumps: A review’, International Journal of Thermofluids, vol. 20, p. 100506, Nov. 2023, doi: 10.1016/j.ijft.2023.100506.

S. Ahmed, A. Hassan, R. Zubair, S. Rashid, and A. Ullah, ‘Design modification in an industrial multistage orifice to avoid cavitation using CFD simulation’, Journal of the Taiwan Institute of Chemical Engineers, vol. 148, p. 104833, Jul. 2023, doi: 10.1016/j.jtice.2023.104833.

V. Ganev, R. Lazarov, and B. Bankov, ‘Approach for determining the ballistic characteristics of the ammunition’, presented at the International Scientific Conference ―Defense Technologies, Shumen, 2023, pp. 285–289

V. Ganev and B. Bankov, ‘Investigation of the motion of a 7,62x54 caliber projectile in an aquatic environment’, presented at the Актуални проблеми на сигурността, Велико Търново: Издателски комплекс на НВУ „Васил Левски”, 2023, pp. 1511–1516.

Р. Лазаров, ‘Изследване на влиянието на формата на куршума върху рикошетното му действие’, НВУ ‘Васил Левски’, Велико Търново, 2022.

Министерство на народната отбрана, Наставление по стрелково дело. Материална част на стрелково оръжие. София: Военно издателство, 1987.

Я. Димитрова, ‘Изследване на влиянието на трибологичните характеристики на шумозаглушител върху групираността при стрелба със стрелково оръжие.’, НВУ “Васил Левски", Велико Търново, 2021.

CFD Wiki, ‘Turbulence length scale’, CFD Online. Accessed: Jan. 21, 2024. [Online]. Available: https://www.cfd-online.com/Wiki/Turbulence_length_scale

Downloads

Published

2024-06-22

How to Cite

[1]
B. Bankov, “ANALYSIS OF THE INFLUENCE OF THE OGIVE RADIUS OF A 7.62X39 AMMUNITION BULLET ON THE CAVITATION CAVITY”, ETR, vol. 4, pp. 37–40, Jun. 2024, doi: 10.17770/etr2024vol4.8192.