A Study Of Major And Trace Element Accumulation In Humic Acids


  • Diana Dudare University of Latvia (LV)
  • Oskars Purmalis University of Latvia (LV)
  • Maris Klavins University of Latvia (LV)




X-ray fluorescence spectroscopy, humic acids, peat, trace and major elements


It has been widely studied recent as well as historic accumulation of elements in peat profiles depending on intensity of anthropogenic pollution and thereby peat profiles serve as archives for research of environmental change. Peat ability to accumulate major and trace elements depends on the character of element supply, potency of metal ions to bind functionalities in the peat structure, pH reaction, oxygen presence, presence of complexing compounds, inorganic ions and many other factors. The aim of this study is to assign major and trace element distribution in humic acids (HA) for two well characterized ombrotrophic peat profiles of Eipurs and Dzelve Bog and analyse factors affecting element concentration in peat humic acids. Elemental and functional analysis of the isolated HAs was done, using total reflection X – ray spectrometry, Elemental Analyzer Model EA – 1108, Thermospectronic Helios γ UV (Thermo Electron Co.) spectrophotometer, Total acidity method.


Download data is not yet available.


Fuchsman, C.H. Peat: Industrial Chemistry and Technology. Academic Press: N.Y., 1980.

Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A.K., Frei, R., Gloor, M., Kramers, J.D., Reese, S., van der Knaap, W.O. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1998, p.1635 – 1640.

Shotyk, W. The chronology of antropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland. The Science of the Total Environment 292, 2002, p. 19 – 31.

Orru H., Orru M. Sources and distribution of trace elements in Estonian peat. Global and Planetary Change 53, 2006, p. 249 – 258.

de Vleeschouwer, F., Gerard, L., Goormaghtigh, C., Mattielli, N., le Roux, G., Fagel, N. Science of the Total Environment 377, 2007, p. 282 – 295.

Gondar, D., Lopez, R., Fiol, S., Antelo, J.M., Arce, F. Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 126, 2005, p. 367–374.

Zaccone, C., Miano, T.M., Shotyk, W. Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry, 38, 2007, p. 151 – 160.

Zaccone, C., Cocozza, C., Cheburkin, A.K., Shotyk, W., Miano, T.M. Distribution of As, Cr, Ni, Rb, Ti and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile (NW Switzerland). Appl. Geochem. 23, 2008, p. 25 – 33.

Zaccone, C., Soler-Rovira, P., Plaza, C., Cocozza, C., Miano, T.M. Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH+Na4P2O7 solutions. Journal of Hazardous Materials 167(1/3), 2009, p. 987 – 994.

Stevenson, F. J. Humus chemistry. N.Y.: J.Wiley, 1982.

Aiken, G.R. Isolation and concentration techniques for aquatic humic substances. In: Aiken, G.R. et al. (Eds.), Humic substances in soil, sediments and water, N.Y.: Wiley, 1985.

Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore, B., Pedersen, T., Rosenthal, Y., Tan, K.H. Humic matter in soil and the environment: Principles and Controversies. N.Y.: Marcel Dekker, 2003.

Tipping, E. Cation Binding by Humic Substances, Cambridge University Press, 2002.

Davies, G., Fataftah, A., Cherkasskiy, A., Ghabour, E.A., Radwan, A., Jansen, S.A., Kolla, S., Paciolla, M.D., Sein, L.T., Buermann, W., Balasubramanian, M., Budnick, J., Xing, B. Tight metal binding by humic acids and its role in biomineralization. J.Cham.Soc.Dalton Trans., 1997, p. 4047 - 4060.

Zhou, P., Yan, H., Gu, B. Competitive complexation of metal ions with humic substances. Chemosphere 58, 2005, p. 1327 - 1337.

Pourret, O., Davranche, M., Gruau, G., Dia, A. Rare earth elements complexation with humic acid. Chem. Geol. 243, 2007, p. 128 – 141.

Riise, G., Salbu, B. Major and trace elements in standard and reference samples of aquatic humic substances determined by instrumental neutron activation analysis (INAA). Sci. Total Environ. 81/82, 1989, p. 137 – 142.

Fengler, G., Grossman, D., Kersten, M., Liebezeit, G. Trace metals in humic acids from recent Skagerrak sediments. Marine Pollution Bulletin 28, 1994, p. 143 - 147.

Kuske, E., Silamikele, I., Kalnina, L., Klavins, M. Peat formation conditions and peat properties: a study of two ombrotrophic bogs in Latvia. In: Klavins, M. (Eds.), Mires and peat. Riga, University of Latvia Press, 2010, p. 56.

Silamikele, I., Nikodemus, O., Kalnina, L., Purmalis, O., Sire, J., Klavins, M. Properties of peat in ombrotrophic bogs depending on the humification process. In: Klavins, M. (Eds.), Mires and peat. Riga, University of Latvia Press, 2010, p. 71.

Krachler, M., Shotyk, W., Emons, H. Digestion procedures for the determination of antimony and arsenic in small amounts of peat samples by hydride generation – atomic absorption spectrometry. Anal. Chim. Acta 432, 2001, p. 303 – 310.

MacCarthy, P. A proposal to establish a reference collection of humic materials for interlaboratory comparisons", Geoderma 16, 1976, p. 179-181.

Tan, K.H. Principles of soil chemistry. Marcel Dekker, Inc., New York, NY, 1982.

Schnitzer, M. Organic matter characterization. In: Miller, R.H., Keeney D.R. (Eds.), Methods of soil analysis. Agronomy series No. 9. American. Society of Agronomy, Madison, W.I., 1982, p. 581 – 594.

Cabaniss, S.E. Synchronous fluorescence spectra of metal-fulvic acid complexes. Environ. Sci. Technol. 26, 1992, p. 1133 – 1139.




How to Cite

D. Dudare, O. Purmalis, and M. Klavins, “A Study Of Major And Trace Element Accumulation In Humic Acids”, ETR, vol. 1, pp. 76–82, Aug. 2015, doi: 10.17770/etr2011vol1.891.