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Abstract. In this paper, we solve the problem of perturbation of an incompressible viscous fluid
caused by the motion of an infinite cone in the direction of the axis of symmetry. The method involves the
introduction of a harmonic current function. The Navier-Stokes equations with the incompressibility
equation reduces to a system of ordinary differential equations.
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Introduction

Let us consider the motion of an infinite cone of revolution in the direction of the axis
of symmetry. Let U speed of movement of the cone, 2« Is the angle at its vertex. The problem
consists in finding the velocity field characterizing the perturbation of an incompressible
viscous fluid, caused by the motion of the cone.

There are many approaches to solving boundary-value problems for the Navier-Stokes
equations. Two-dimensional problems are considered on a complex field. In spatial problems,
the solution is sought in a previously undefined form. The success of such a search largely
depends on the professionalism of the researcher. The numerical solution has an applied
meaning. [3, 4]

Description of the method
For the incompressible viscous fluid, the Navier-Stokes system of equations has the
form:

ov 1 -
—=—(-V)o+VAo—-—Vp+ f,

V-0 =0,

where the second equation is called the incompressibility condition. From equation (1)
N.E. Cochin obtained an equation, later called the generalized Helmholtz equation [1, p.404]:

%+(D'V)é—(f)~V)ﬁ=vAﬁ, 2

where Q =V x5 .
We satisfy the equation of incompressibility by introducing the vector stream function:

5=VxV¥. ©)
Such an action will make sense in those cases when at least two components of the

velocity vector are not identically equal to zero. In other conditions, it is necessary to solve the
task in another way.
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Let us consider in detail the function of the current ¥ Is determined to within Ve,
where ¢ - arbitrary scalar function, it can always be assumed that
V¥ =0. (4)

Really
Y=Y, +Vg;, V¥ =VY¥, +Aop,

choosing ¢ so that Ag = —V'P, obtain (4).
In view of what has been said

Q=Vx0=VxVx¥=V(V-¥)-AVY,
Considering (4)
Q=-AY. (%)
Now, if we assume that ¥ - harmonic function,
AY =0, (6)

Then the generalized Helmholtz equation (2) will be satisfied. If we find a solution of
the Laplace equation for a vector stream function that satisfies the boundary conditions of the
hydrodynamic problem of incompressible viscous fluid, then the velocity field is found from
(3). From (6), after simple transformations, we have

Vx(AY)=A0=0. (7

We form the boundary conditions (external problem)

{v x ‘PLA —G(P),P € 4A, @

where A - the area filled with fluid, 0A - he boundary of this region, G(P)- Is the

velocity of the liquid at the boundary of the surface under consideration, U - Is the velocity of
a steady flow of a liquid.

In view of the uniqueness theorem for the solution of boundary value problems (8) for
the system of partial differential equations (6), the solution obtained in the form (3) is unique.

The solution of the problem

Consider a spherical coordinate system with origin at the vertex of the cone. Then the
boundary conditions have the form:

Ur| =-Ucosa; UH|6:a =Usina; v, = 0. 9)

O=a =a
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Because the equation is symmetricin ¢: ai =0;v,=0.
Q

Assuming ¥ (0,0, ¥, (r,0)) , we obtain from (17) the velocity components (the first two
components are zero to satisfy v, =0):

oY
:1 ¢,+cot9‘{,;
r oo r°

r

1
v, VY (10)
v, =—-———-—",

’ or r

Since the boundary conditions do not contain r, we seek solutions in the form
¥, =r-f(9). (11)

Substituting (11) into (9) we obtain:

f"+ f'cotd+2f =0. (12)

Thus, the problem is reduced to the search for a solution of a second-order linear
differential equation. By means of the theory of ordinary differential equation we obtain the
following result:

f(0) = Acos 6 + B(l—cosé’-ln cotg). (13)
Then satisfying (9), we obtain:

A= —Esin aln cotg;
2 2

(14)
B= —Esin a.
2
In this way f (@) Is determined from the relations (13) and (14).
Let us find the velocity components:
, 1 0
v, =1+ fcotd =——| Acos26 + 2B cos & — Bcos26In cot— |;
sin 8 2
(15)

v, =-2f =-2Acos@ - 28[1— cosédlIn cotgj;
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[— cos 26 In cot % —2c0s 6 +cos 26 In cot g}

v, =Usin 0[005 dIn cot%— coséIn cot§+1};

=0.
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(16)

Thus, the velocity field is determined by the relations (16) with, which is the solution

of the initial problem.

Conclusions

The main advantage of this method is that the problem reduces to solving a system of
linear partial differential equations, and from theory it is known that a solution always exists,
and the only one. Very often such a system does not have solutions in elementary functions, or,
if it does, obtaining such expressions strongly depends on the professionalism of the decider. In
any case, this is a strong simplification, and indeed, the indicated problem (3), (6), (8) from the
point of view of approximate calculations has less complexity.

Attachment

To facilitate the reading of the article, the expressions for differential operators in
spherical coordinates are given below. Components of the vector Laplace operator of the

function [2]:

4

) aAj
— |+
or
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r’ or
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And the components of the velocity vector 5 =V x ¥ have the form:

o
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