METHODS OF CALCULATING THE SHADOW ECONOMY AND THEIR COMPARISON IN THE BALTIC STATES

Authors

  • Lūcija Burmeistere Rēzeknes Tehnoloģiju akadēmija (LV)

DOI:

https://doi.org/10.17770/iss2024.8332

Keywords:

Baltic states, shadow economy, shadow economy calculation methods, shadow economy index

Abstract

Despite the fact that from 2012 to 2022 the economic growth rate of the Baltic states had increased, the share of the shadow economy in their economies decreased only minimally and still remains above 20% of GDP. The shadow economy consists of numerous and various components and influencing factors, the scope of which depends on the researcher, country, chosen method, and other criteria. The shadow economy is a significant economic phenomenon that needs to be controlled, monitored, and combated. To successfully combat it, it is necessary to work on methods for calculating the shadow economy, understand the formulas of these methods, their scope, and apply the appropriate method depending on the chosen objective, since the precise extent of the shadow economy cannot be accurately determined. The novelty of the research: the author studied the methods for calculating the shadow economy, their various scopes, and the impact they have on the variability of the shadow economy indicator, using the methods applied in the Baltic states.

Downloads

Download data is not yet available.

References

Barra, P. A., Hutton, E., & Prokof'yeva, P. (2023). Corporate Income Tax Gap Estimation by using Bottom-Up Techniques in Selected Countries: Revenue Administration Gap Analysis Program, Technical Notes and Manuals. International Monetary Fund 2023(006), A001. https://www.elibrary.imf.org/view/journals/005/ 2023/006/article-A001-ne.xml

Dell’Anno, R. (2003). Estimating the shadow economy in Italy: A structural equation approach. Economics Working Paper No. 2003-7. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=411443

European Commission (2023). VAT gap in the EU. https://op.europa.eu/en/publication-detail/-/publication/84ba1bdf-7230-11ee-9220-01aa75ed71a1/language-en

Fantcho, J., & N’Gouan, P. (2024). Spatial characteristics and dynamic modeling of informal economies. International Economics and Economic Policy. 1-32. DOI:10.1007/s10368-024-00609-9

Finanšu ministrija (2022a). Pētījumi par ēnu ekonomikas apjomu. https://www.fm.gov.lv/lv/petijumi-par-enu-ekonomikas-apjomu

Finanšu ministrija (2022b). Ēnu ekonomikas cēloņi un sekas. https://www.fm.gov.lv/lv/enu-ekonomikas-celoni-un-sekas

Finanšu ministrija (26.10.2024). Ēnu ekonomikas ierobežošanas plāns 2024.–2027. gadam. https://tapportals.mk.gov.lv/attachments/legal_acts/document_versions/b88b3cdc-1003-4198-9063-6d0b564de748/download

Grēviņa, R. (2000). Ekonomikas skaidrojošā vārdnīca. Izdevniecība “Zinātne”.

Helberger, C., & Knepel, H. (1988). How big is the shadow economy?: A re-analysis of the unobservedvariable approach of BS Frey and H. Weck-Hannemann. European Economic Review, 32(4), 965-976. https://doi.org/10.1016/0014-2921(88)90055-4

Joppe, A. (2008). Nodokļu administrēšanas pilnveidošana. [Promocijas darbs]. https://dspace-dev.lu.lv/server/api/core/bitstreams/d943766a-955f-49cc-8471-a1a8e83c5915/content

Medina, L., & Schneider, F. (2018). Shadow economies around the world: what did we learn over the last 20 years? IMF Working Papers, WP/18/17 https://www.imf.org/-/media/Files/Publications/WP/2018/ wp1817.ashx

Murphy, R. (2019). The European Tax Gap. A report for the Socialists and Democrats Group in the European Parliament. https://www.socialistsanddemocrats.eu/sites/default/files/2019-01/the_european_tax_gap_en_ 190123.pdf

Putniņš, T. J., & Sauka, A. (2022a). Metodika ēnu ekonomikas apjoma noteikšanai, algoritms tās apjoma prognozēšanai un ēnu ekonomikas aplēses Latvijā 2020. un 2021. gadā. https://www.fm.gov.lv/lv/media/13796/download?attachment

Putniņš, T. J., & Sauka, A. (2022b). Pētījums par ēnu ekonomikas apmēru Latvijā 2020. un 2021.gadā, izmantojot izstrādāto ēnu ekonomikas mērīšanas metodoloģiju. https://www.fm.gov.lv/lv/media/13798/download?attachment

Putniņš, T., & Sauka, A. (2023). Ēnu ekonomikas indekss Baltijas valstīs 2009.–2022. gadā. [Prezentācija]. https://www.sseriga.edu/sites/default/files/2023-05/Enu_ekonomikas_indekss_2009_ 2022_0.pdf

Sauka, A. (2020). Projekta VPP “Ēnu ekonomikas mazināšana valsts ilgtspējīgas attīstības nodrošināšanai” projekta “Ēnu ekonomikas izpēte Latvijā (RE:SHADE) saturiskais pārskats Nr.1. https://www.fm.gov.lv/lv/media/13772/download?attachment

Schneider, F. (2019). Latest developments of the shadow economy in the Baltic countries: what are the major causes and what could be done?. https://www.llri.lt/wp-content/uploads/2019/09/Shadow-Economy_ Baltic_Countries_September_finalLONGPDF.pdf

Schneider, F. (2022). New COVID-related results for estimating the shadow economy in the global economy in 2021 and 2022. International Economics and Economic Policy. 19. DOI:10.1007/s10368-022-00537-6

Schneider, F., & Buehn, A. (2017). Estimating a Shadow Economy: Results, Methods, Problems, and Open Questions. Open Economics, 1, 1-29. https://doi.org/10.1515/openec-2017-0001

Valsts ieņēmumu dienests (2022). Nodokļu plaisu apmēri. https://www.vid.gov.lv/lv/nodoklu-plaisu-apmeri

Valsts ieņēmumu dienests (2023). Nedeklarētā darba samaksa (“aplokšņu alga”) vispārējā nodokļu režīmā strādājošiem un tās radītā nodokļu plaisa 2022.gadā. [Prezentācija]. https://www.vid.gov.lv/en/media/18936/download?attachment

Burmeistere, L. (2024). Ēnu ekonomikas un tās izraisošo faktoru ietekmes izvērtējums Latvijā. [Diplomdarbs].

Downloads

Published

2024-12-19