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Abstract. This study describes an optimization method called Simulated Annealing. The 

Simulated Annealing method is widely used in various combinatorial optimization tasks. 

Simulated Annealing is a stochastic optimization method that can be used to minimize the 

specified cost function given a combinatorial system with multiple degrees of freedom. In this 

study the application of the Simulated Annealing method to a well - known task of combinatorial 

analysis, Travelling Salesman Problem, is demonstrated and an experiment aimed to find the 

shortest tour distances between educational institutions of Rēzekne Municipality is performed. 

It gives possibilities to analyze and search optimal schools' network in Rēzekne Municipality. 

Keywords: Educational institutions, Optimization, Rēzekne Municipality, Simulated Annealing, 

Travelling Salesman Problem. 

 

Introduction 

 

Information about school consolidation or optimization periodically appears 

in Latvian society. It is believed that the ideal school network is not ready. 

Ministry of Education and Science offered the company "Jāņa Sēta" to develop 

the mapping of educational institutions. In a follow-up study, in Bauska county, 

there can be seen both students’ pathways and the most populous and 

economically most active counties, that helped the county authority take the 

decision that secondary schools should be retained only in Bauska. When "Jāņa 

Sēta" develops a similar mapping for all of Latvia, then the ideal network of 

schools will be seen (Kuzmina, 2016). Children of Rēzekne Municipality have 

possibility to choose among 13 basic schools, 6 secondary schools, 3 special 

boarding basic schools and 19 kindergartens. After school they can attend: one 

sports school for children and youth, one art school for children or one center for 

children and youth ("Educational institutions," 2016). The article offers the 

analysis of the location of educational institutions based on their availability. The 

theoretical study has been carried out and the shortest path between different 
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educational institutions is calculated mathematically, the mapping of these 

educational institutions and different levels of analysis of the location of 

educational institutions are offered (e.g. to find up the opportunities for basic 

school or kindergarten graduates have access to education as close as possible to 

the place of residence) (we used data from ("Educational institutions," 2016). 

We define the following levels of educational institutions: 

Level 1: Kindergartens; Level 2: Basic schools; Level 3: Secondary schools; 

Level 4: Special boarding basic schools; Level 5: Vocational oriented educational 

institutions. 

We have developed the software that allows to find the shortest path between 

different educational institutions in Rēzekne Municipality with a purpose to 

optimize and determine the shortest route between educational institutions. A 

multi-tiered architecture in educational institutions characterization and 

overlapping is offered. The aim of the study could be the development of 

recommendations and analysis in the potential educational network optimization. 

 

Mathematical background 

 

Simulated Annealing (SA) is a stochastic optimization method used for the 

optimization of objective function (energy). It allows to find the global extreme 

for the function that has local minimums. SA principle was announced in the 

classical work (Kirkpatrick et al., 1983) and developed in works (Laarhoven & 

Aarts, 1987), (Otten & Ginneken, 1987), (Granville et al., 1994), (Ingber, 1993). 

SA is based on the analogy of statistical mechanics and, in particular, the 

solid-state physics elements. The practical example from metallurgy can be given- 

what happens to the atomic structure of the body, lowering its temperature, in 

other words, if it is rapidly cooled. Rapid temperature reduction can lead to 

unsymmetrical system structure, or in other words, to a sub-optimal position (with 

errors). Cooling ultimately leads to a condition where the system curdles or 

freezes, and thermal equilibrium sets in. 

The so-called Metropolis procedure (Kirkpatrick et al., 1983) determines 

iterative steps, which control the best solution to be achieved. This algorithm is 

used in atomic equilibrium simulation with the given temperature. On each step 

of the algorithm atom is raised with a small probabilistic movement (shifting): 

𝑥𝑖 + 𝜁, and system energy change Δ𝐸 is calculated. 

- If Δ𝐸 ≤ 0, then the movement is accepted and configuration with altered 

states of atoms is used as the initial state for the next step; 

- If Δ𝐸 > 0, then the probability that the new state will be accepted is: 

                                               𝑃(∆𝐸) = 𝑒−
∆𝐸

𝑘𝑇                                              (1) 

where 𝑘 – Boltzmann’s constant, 𝑇 – temperature parameter.
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Using the energy system as a target function and defining the states of the 

system with {𝑥𝑖}- it is seen, that the Metropolis procedure generates a series of 

states for the given optimization problem with particular temperature. 

Another way to understand SA as a combinatorial optimization method is to 

imagine the energy surface, as it is shown in Figure 1. 
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Fig.1 Energy surface (G – global, L – local) 
  

 

The black globule, starting from the arbitrarily selected point, always 

searches for the way down. If such a system is compromised - and somehow is 

exposed (e.g. by shaking), then the globule will mostly move from 𝐴 to 𝐵, because 

the energy barrier is less from the 𝐴 side. 

If there is a slight effect, then, obviously, the globule more often will move 

from 𝐴 to 𝐵, not from 𝐵 to 𝐴. If the effect is strong, then the globule will overcome 

the barriers faster and more frequently, that is it may move from 𝐴 to 𝐵 and from 

𝐵 to 𝐴. If, however, we want to affect the globule movement, then a good 

compromise would be to start with a stronger effect and gradually reduce the 

exposure. This will ensure that at some step the globule will pass the global 

minimum. 

To use the SA method practically, the following must be specified: 

1. Target function 𝑊 (analogous to energy surface), whose minimization 

is the purpose of this procedure; 

2. Possible set of solutions according to the energy surface or the physical 

state of the system; 

3. Configuration conditions, the variation generator; 

4. Control parameter 𝑇, which characterizes an artificial system 

temperature, and the cooling mode (annealing schedule), that describes 

how the temperature will be lowered. 

SA algorithm is based on the Boltzmann’s probability distribution: 
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                                                 Pr(𝑒)~𝑒−
𝐸

𝑘𝑇                                               (2) 

 

This expression specifies that if the system is in thermal equilibrium with 

temperature 𝑇, then its energy is probably divided among all the different energy 

states 𝐸. Even at low temperatures there is a possibility that the system may be 

found in a high energy state. The system has an adequate probability of moving 

from a local energy minimum state to a better, more global, minimum. 

Further, as SA algorithm application the well-known combinatorial task will 

be offered- the Traveling Salesman Problem (TSP). 

 

Classical Travelling Salesman Problem 
 

TSP task is to find the minimum route between 𝑁 cities – entering into each 

city only once and in the end returning to original city. This is well-known 

combinatorial task that can be solved with a variety of combinatorics or graph 

theory techniques. In literature TSP solving methods with the SA algorithm are 

viewed also (Cook, 2011), (Coughlin & Baran, 1985), (Applegate et al., 2006), 

(Grabusts, 2000). 

Let us define the distance matrix 𝐷 = (𝑑𝑖𝑗), 𝑖, 𝑗 = 1,2,… , 𝑛,- distance 

between cities 𝑖 and 𝑗. Each route can be represented as an element 𝜋 of all 

permutations among the 𝑛 cities sets. If possible route set consists of all the 

cyclical permutations, then in total there are √(𝑛 − 1)! such permutations. The 

objective function is defined as follows: 

 

                                            𝐶(𝜋) = ∑ 𝑑𝑖𝜋(𝑖)
𝑛
𝑖=1                                           (3)  

 

TSP task is to minimize the objective function in all possible permutations. 

If 𝑛 cities are located in 2-dimensional Euclidean space and 𝑑𝑖𝑗 is Euclidean 

distance between cities 𝑖 and 𝑗, then 𝐶𝑜𝑝𝑡
(𝐷)

 is the shortest route for a given distance 

matrix 𝐷.  

To use SA algorithm for such type of tasks some concepts have to be 

introduced. For each route we can define the neighbor as a rout set that can be 

reached from the current path during one transition. Such neighboring structure 

mechanism for the TSP is called the 𝑘 − 𝑜𝑝𝑡 transitions. In the simplest case - 

2 − 𝑜𝑝𝑡 transition is based on the fact that the two cities are selected on the current 

route and the sequence, in which the cities between these couples were visited, is 

reversed (see Figure 2). 
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Fig.2 2-opt example (on the left – the current route, on the right – after reversing the 

sequence between 𝒎 and 𝒏 

 

Route neighbors are now defined as a set of cities that can be reached from 

the current rout through the 2 − 𝑜𝑝𝑡 transitions (i.e. √(𝑛 − 1)𝑛) such neighbors). 

 

Research part 

 

In the research part different levels of educational institutions, educational 

institutions and their GPS coordinates were defined, the shortest path between 

educational institutions with the help of SA algorithm was computed and the 

attachment of educational institutions to the geographic maps was carried out. 

Level 1. Kindergartens (see Table 1.) 

 
Table 1 Denotation and GPS coordinates of kindergartens 

 

No. Name of kindergartens (in Latvian) Latitude Longitude 

1 Čornaja (Čornajas pirmsskolas izglītības iestāde) 56,38478 27,415519 

2 Dricāni (Dricānu pirmsskolas izglītības iestāde) 56,649235 27,182159 

3 
Gaigalava (Gaigalavas pirmsskolas izglītības 

iestāde) 
56,734355 27,06622 

4 Ilzeskalns (Ilzeskalna pirmsskolas izglītības iestāde) 56,641404 27,393226 

5 
Kaunata (Kaunatas pirmsskolas izglītības iestāde 

„Zvaniņš”) 
56,330835 27,544932 

6 
Lūznava (Lūznavas pirmsskolas izglītības iestāde 

„Pasaciņa”) 
56,359505 27,262984 

7 Malta (Maltas pirmsskolas izglītības iestāde) 56,349716 27,166046 

8 
Mākoņkalns (Mākoņkalna pirmsskolas izglītības 

iestāde) 
56,290113 27,439382 

9 Nagļi (Nagļu pirmsskolas izglītības iestāde) 56,684951 26,928374 

10 
Nautrēni (Nautrēnu pirmsskolas izglītības iestāde 

„Vālodzīte”) 
56,711536 27,411917 
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No. Name of kindergartens (in Latvian) Latitude Longitude 

11 
Ozolaine (Ozolaines pirmsskolasizglītības iestāde 

„Jāņtārpiņš”) 
56,41097 27,233186 

12 Rikava (Rikavas pirmsskolas izglītības iestāde) 56,610504 27,033659 

13 Silmala (Silmalas pirmsskolas izglītības iestāde) 56,396045 27,095819 

14 
Strūžāni (Strūžānu pirmsskolas izglītības iestāde 

„Zvaniņš”) 
56,69624 27,239002 

15 
Uļjanova (Uļjanovas pirmsskolas izglītības iestāde 

„Skudriņa”) 
56,549423 27,061344 

 

SA algorithm in this case was carried out in 21 steps. Algorithm computed 

the shortest route; it was 198 km (see Figure 3). Attachment of educational 

institutions to the map is shown in Figure 4. 
 

 
 

Fig.3 The shortest path between kindergartens computed with the help of SA algorithm 

 

Level 2. Basic schools (see Table 2.) 

SA algorithm in this case was carried out in 22 steps. The shortest path 

computed with algorithm was 251 km (see Figure 5). The attachment of 

educational institutions to the map is shown in Figure 6. 
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Fig.4 The attachment of the shortest path between the kindergartens to Google maps 

 

 
Fig.5 The shortest path between basic schools computed with the help of SA algorithm 
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Table 2 Denotation and GPS coordinates of basic schools 

 

No. Name of basic schools (in Latvian) Latitude Longitude 

1 Audriņi (Audriņu pamatskola) 56,587559 27,242635 

2 Bērzgale (Bērzgales pamatskola) 56,629493 27,516288 

3 Feimaņi (Feimaņu pamatskola) 56,272112 27,042613 

4 Gaigalava (Gaigalavas pamatskola) 56,734361 27,06622 

5 Jaunstrūžāni (Jaunstrūžānu pamatskola) 56,695701 27,235483 

6 Kruķi (Kruķu pamatskola) 56,405302 27,00685 

7 Liepas (Liepu pamatskola) 56,419436 27,206095 

8 Rēzna (Rēznas pamatskola) 56,435283 27,552322 

9 Rikava (Rikavas pamatskola) 56,622145 27,044503 

10 Sakstagals (Sakstagala Jāņa Klīdzēja pamatskola) 56,534155 27,144494 

11 Verēmi (Verēmu pamatskola) 56,574573 27,366389 

 

 
Fig.6 The attachment of the shortest route between basic schools to Google Maps 
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Level 3. Secondary schools (see Table 3.) 

 
Table 3 Denotation and GPS coordinates of secondary schools 

 
No. Name of secondary schools (in Latvian) Latitude Longitude 

1 Dricāni (Dricānu vidusskola) 56,649232 27,182524 

2 Kaunata (Kaunatas vidusskola) 56,331737 27,543208 

3 
Makašāni (Lūcijas Rancānes Makašānu Amatu 

vidusskola) 
56,587671 27,315964 

4 Malta (Maltas vidusskola) 56,347054 27,157439 

5 Nautrēni (Nautrēnu vidusskola) 56,71153 27,412196 

6 Tiskādi (Tiskādu vidusskola) 56,405377 27,007207 

 

SA algorithm in this case was carried out in 17 steps. The shortest path 

computed with algorithm was 162 km (see Figure 7). The attachment of 

educational institutions to the map is shown in Figure 8. 

 
Fig.7 The shortest path between secondary schools computed with the help of SA 

algorithm 
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Fig.8 The attachment of the shortest path between secondary schools to Google Maps 

 

Similarly, statistics on Level 4 and 5 was collected. How can it be used 

practically? Supposing, that there is a need to find out the optimal distance 

between secondary schools, basic schools and kindergartens, make the attachment 

of these educational institutions to the map with the purpose to analyze the 

potential children closeness to the educational institution. (see Figures 9 and 10). 
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Fig.9 The shortest computed route between the three groups of educational institutions 

 

 
 

Fig.10 The attachment of the shortest route between the three groups of educational 

institutions to Google Maps 
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We assume that the result is trivial for the heads of educational institutions. 

It is clear, that for the children after finishing Čornaja kindergarten it is nearer to 

get education in Rēznas basic school or Kaunatas secondary school. But in our 

case, a theoretical modeling tool is offered, when one of the educational 

institutions is hypothetically excluded from "circulation". 
 

Conclusions 
 

We proposed that our simulation result is relatively simple, but in case it was 

needed to exclude a school from the existing network of educational institutions, 

it would allow to model overlapping of educational institutions on the map and 

determine children potentially shortest route to the chosen educational institution. 

In this study the software that allows to find the shortest path between 

different educational institutions in Rēzekne Municipality with a purpose to 

optimize and determine the shortest path between educational institutions has 

been developed. A multi-tiered architecture in educational institutions 

characterization and overlapping is offered. The aim of the study was to develop 

the modeling tool for analysis of potential educational network optimization. 
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