STUDENT GRAPHICAL INFORMATION LITERACY IN MATHEMATICS AND SCIENCE
Abstract
Keywords
Full Text:
PDFReferences
Biggs, J.B., & Collis, K.F. (1982). Evaluating the Quality of Learning – the SOLO Taxonomy. New York: Academic Press.
France, I., Namsone, D., Čakāne, L., Dzērve, U., & Vilciņš, J. (2016). Teaching to Use in Science and mathematics Previously Acquired Skills. SOCIETY. INTEGRATION. EDUCATION. Proceedings of the International Scientific Conference, 2016. Volume II, (pp.51-65). Rezekne: Rezeknes Academy of Technologies.
Fullan, M. & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning.
Geske A., Grīnfelds A., Kangro A., & Kiselova R. (2016). Latvija OECD Starptautiskajā skolēnu novērtēšanas programmā 2015 – pirmie rezultāti un secinājumi. Latvijas universitāte, Rīga.
Harlen, W. (2010). Principles and big ideas of science education. Hatfield: ASE.
Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. Routledge.
OECD (2016a). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematical and Financial Literacy. OECD Publishing, Paris.
OECD (2016b). PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA, OECD Publishing, Paris.
OECD (2016c). PISA 2015 Technical Report. Pieejams: https://www.oecd.org/pisa/data/PISA-2015-Technical-Report-Chapter-12-scaling.pdf
VISC. (2016). Diagnosticēsim dabaszinātņu mācību priekšmetu apguvi 9.klasē! Pieejams: http://visc.gov.lv/vispizglitiba/eksameni/dokumenti/ce_paraugi/dzm/diagnosticesim_dabzin_apguvi_9kl.pdf
DOI: https://doi.org/10.17770/sie2017vol2.2394
Refbacks
- There are currently no refbacks.