• Anita Sondore Daugavpils University (LV)
  • Elfrīda Krastiņa Daugavpils University (LV)
  • Elga Drelinga Daugavpils University (LV)
  • Pēteris Daugulis Daugavpils University (LV)



mathematical competence, problem solving, individualisation of studies, skill transfers in new situations


Mathematical competence is one of the basic competences defined in the EU. Results of international studies in recent years show that the percentage of pupils in Latvia with high level (5.,6.) of mathematical competence has decreased from 8% (PISA, 2012) to 5,2% (PISA, 2015). Observations of mathematical lessons show that individualization of studies is not a popular everyday feature, nonstandard problems are rarely used in the work with primary school pupils. Sustainable education can not be envisioned without creative thinking necessary for solving various nonstandard problems. Mathematical competitions also require creative applications of knowledge. The goal of this study was to analyze problems of Latvian mathematical contests for grades 4-6 of the last 3 years according to categories of mathematical content. The most important cognitive and metacognitive strategies necessary for their solution are shown. It is important to turn attention of teachers to much wider inclusion of contest problems into study process of primary school. It will enable to individualize studies and stimulate skill transfer to new situations for gifted pupils. The authors encourage teachers to use nonstandard (contest) problems as an indivisualization tool which will give opportunity for pupils to master knowledge and skill transfer. It will provide regular training of mind and positive emotions for pupils who are bored with solving standard problems.


Download data is not yet available.


Andžāns, A., Freija, L., Zabarovska, S. & Johannessons, B. (2009). Matemātikas sacensības 9.- 12. klasēm 2005./2006. mācību gadā. Rīga: Biznesa augstskola Turība.

Artelt, C. & Moschner, B. (2005). Lernstrategien und Metakognition. Implikationen für Forschung und Praxis. Münster: Waxmann.

Avotina, M. & Šuste, A. (2015). Changes in Mathematical Olympiad Problem Sets in Latvia. Acta Paedagogica Vilnensia, 35, 45-52.

Avotina, M. & Šuste, A. (2016). What mathematics teachers know about problems of Mathematical Olympiads. In: Lepik, M. (Eds.) Proceedings of the 17th International Conference "Teaching Mathematics: Retrospective and Perspektives", (pp. 16-24). Tallinn: Tallinn University.

Bruner, J. S. (1960). The Process of Education. Cambridge, Mass.: Harvard University Press.

de Corte, E. (2010). Historical developments in the understanding of learning. In Dumont, H.;

Istance, D. & Benavides, F. The Nature of Learning: Using Research to Inspire Practice. OECD: Paris. 199–216.

Eurydice (2011). Mathematics Education in Europe: Common Challenges and National Policies. Eurydice Report. Education, Audiovisual and Culture Executive Agency. Online: 132EN.pdf

Eurydice (2012). Developing Key Competences at School in Europe: Challenges and Opportunities for Policy. Eurydice Report. Luxembourg: Publications Office of the European Union . Online: pdf

Fullan, M. & Langworthy M. (2014). A Rich Seam. How New Pedagogies Find Deep Learning. Online: /08/ A-Rich-Seam.pdf

Fišers, R. (2005). Mācīsim bērniem domāt. Rīga: Raka.

Geske, A., Grīnfelds, A., Kangro, A. & Kiseļova, R. (2013). Latvija OECD Starptautiskajā skolēnu novērtēšanas programmā 2012 – pirmie rezultāti un secinājumi. Rīga: Latvijas Universitāte.

Geske, A., Grīnfelds, A., Kangro, A. & Kiseļova, R. (2016). Latvija OECD Starptautiskajā skolēnu novērtēšanas programmā 2015 – pirmie rezultāti un secinājumi. Rīga: Latvijas Universitāte.

Geidžs, N. L. & Berliners, D. C. (1999). Pedagoģiskā psiholoģija. Rīga: Zvaigzne.

Hellmich, F. & Wernke, S. (2009). Lernstrategien im Grundschulalter: Konzepte, Befunde und praktische Implikationen. Kohlhammer Verlag.

Hofmeister, A. (1998). Zur Kritik des Bildungsbefriffs aus subjektwissenschflicher Perspektive. Diskursanalytische Untersuchungen. Hamburg: Argument.

Krastiņa, E., Sondore, A., & Drelinga, E. (2015). How to promote text comprehension with pupils of grades 1–6 when teaching to solve combinatorial problems. Acta Paedagogica Vilnensia, 35(35), 67-80.

Maslo, I. (2006). Skolotāju sociālintegrējošas darbības modelēšana. No zināšanām uz kompetentu darbību. LU Akadēmiskais apgāds, 35–44.

Maslo, I. (1995). Skolas pedagoģijas procesa diferenciācija un individualizācija. Rīga: RaKa

Piaget, J. (1970). Science of Education and the Psychology of the Child, New–York: Orion.

Pipere, A. (2011). Datu ieguves metodes pētījumā un to analīze. In Martinsone, K. (ed.). Ievads pētniecībā: stratēģijas, dizaini, metodes. Rīga: Raka, 157–192.

Pipere, A. (2011a). Datu analīze kvalitatīvajā pētījumā. In Martinsone, K. (ed.) Ievads pētniecībā: stratēģijas, dizaini, metodes. Rīga: Raka, 220–243.

Pipere, A., Veisson, M. & Salīte, I. (2015). Developing Research in Education for Sustainability: UN DESD via the Journal of Teacher Education for Sustainability. 17(2), 5-43.

Martı́nez, M. A., Sauleda, N. & Huber, G. L. (2001). Metaphors as blueprints of thinking about teaching and learning. Teaching and Teacher education, 17(8), 965-977.

Salīte, I., Drelinga, E., Iliško, D., Oļehnoviča, E., & Zariņa, S. (2016). Sustainability from the Transdisciplinary Perspective: An Action Research Strategy for Continuing Education Program Development. Journal of Teacher Education for Sustainability, 18(2), 135-152.

Schneuwly, G. (2014). Differenzierungskonzepte sichtbar gemacht. Münster: Waxmann.

Vygotsky, L. S. (1978). Mind and society. Cambridge, MA: Harvard.




How to Cite

Sondore, A., Krastiņa, E., Drelinga, E., & Daugulis, P. (2017). IMPROVING MATHEMATICAL COMPETENCE IN PRIMARY SCHOOL TO ENABLE SKILL TRANSFERS IN NEW SITUATIONS. SOCIETY. INTEGRATION. EDUCATION. Proceedings of the International Scientific Conference, 2, 208-218.