IMPROVING METHODIC COMPETENCE OF PRIMARY SCHOOL MATHEMATICS TEACHERS ON SELF-DIRECTED LEARNING IN LATVIA
DOI:
https://doi.org/10.17770/sie2021vol2.6361Keywords:
learning outcomes, mathematical literacy, professional competence of the teacher, self-directed learningAbstract
From September 2020 schools in Latvia gradually started introducing mathematics curricula and approaches in accordance with the new standards of primary education. The changes aim to prepare a competent student who is ready for self-directed learning, who is able and willing to study and solve real problems of the changing world. A competent teacher is needed to manage this individualized learning process. The research aims to find out the typical mistakes and their causes in the results of the 9th grade students' mathematics exam in Latvia, to provide support to teachers for the improvement of methodic competence of self-directed learning. To clarify the situation about mathematics studies, researchers of Daugavpils University carried out an analysis of the results of the mathematics exam in the 9th grade in the years 2015-2019 (the exam did not take place in 2020). After assessing the quality of pupils' knowledge, we can judge for which mathematics topics teachers need methodic help in the self-directed learning process in primary school. In a survey of teachers in 2018 and 2020, we sought their views on the causes of 9th grade students' mathematics exam outcomes, problems in distance learning and suggestions for methodic assistance to teachers in implementing self-directed learning. In this article we give solutions in which directions the methodic competence of primary school mathematics teachers in studies and further education should be improved.
References
Anspoka, Z., & Kazaka D. (2019). Teachers during Education Reforms: Challenges and Opportunities. In V. Dislere (Ed.), The Proceedings of the International Scientific Conference Rural Environment. Education. Personality, 12, Jelgava: LLU, 41-63. DOI:10.22616/REEP.2019.002
Bohlmann N., & Benölken R. (2020). Complex Tasks: Potentials and Pitfalls. Mathematics 2020, 8(10). Retrieved from: https://www.mdpi.com/2227-7390/8/10/1780
Edurio (2020). Mācību gada noslēguma aptaujas IZM un Edurio aptaujas rezultāti. Retrieved from: https://home.edurio.com/izm-gada-nosleguma-aptaujas
Goggin, D., Sheridan, I., Lárusdóttir, F., & Guðmundsdóttir, G. (2019). Towards the identification and assessment of transversal skills. 13th International Technology, Education and Development Conference. DOI: 10.21125/inted.2019.0686
Helmke, A. (2009). Unterrichtsqualität und Lehrerprofessionalität – Diagnose, Evaluation und Verbesserung des Unterrichts. Seelze: Klett-Kallmeyer. Retrieved from: http://unterrichtsdiagnostik.info/media/files/Cover_Buch.pdf
Krastiņa, E. , & Pipere, A. (2004). Mācību sasniegumu pašizvērtēšana. Rīga: RaKa.
Krastiņa E., Sondore A., & Drelinga E. (2019). Metodisko pieeju analīze problēmrisināšanas lietpratībai 5.-6. klašu matemātikas mācību grāmatās. In V.Lubkina, S.Usca, A.Zvaigzne (Ed.), Proceedings of the International Scientific Conference Society. Integration. Education, Volume II, Rezekne: Rezeknes Academy of Technologies, 255-266.
Langa, C. (2015). The contribution of transversal competences to the training of the educational sciences specialist. Procedia - Social and Behavioral Sciences of the 6th International Conference Edu World 2014 Education Facing Contemporary World Issues, 180, 7–12. Retrieved from: https://core.ac.uk/download/pdf/82125520.pdf
Maslo, I., & Tiļļa, I. (2005). Kompetence kā audzināšanas ideāls un analītiska kategorija. Skolotājs, 3, 4-9.
Matemātika 1.–9.klasei. (2018). Mācību priekšmeta programmas paraugs. Retrieved from: https://mape.skola2030.lv/materials/dj6GonViiyUhvuCVX7Kt9Z
Mārtinsone, K., Pipere, A., Kamerāde, (2016). Pētniecība. Teorija un prakse. Rīga: RaKa.
Mencis, J. (1993). Matemātikas mācīšanas metodiskā sistēma pamatskolā. No V.Vītola, Dz.Krūče (sast.), Profesors Jānis Mencis (1914 - 2011). Bibliogrāfija, (7–27). Liepāja: Liepājas Universitāte.
Niss, M. (2003) What does it mean to be a competent mathematics teacher? A general problem illustrated by examples from Denmark. Retrieved from: https://www.lemonia-boutskou.gr/data/articles/moges-niss.pdf
Nussbaumer, A., Fruhman, K., & Albert, D. (2010). A Navigation Tool for Adaptive Guidance and Orientation in Open Responsive Learning Environments. International Conference on Interactive Computer-aided Learning (ICL 2010), Hasselt. Retrieved from: https://www.researchgate.net/publication/268050706_A_Navigation_Tool_for_Adaptive_Guidance_and_Orientation_in_Open_Responsive_Learning_Environments
Oliņa, Z., Namsone, D., France, I., Čakāne, L., Pestovs, P., Bērtule, D., Volkinšteine, J., Lāce, G., Dudareva, I., Logins, J., & Butkēviča, A. (2018). Mācīšanās lietpratībai. Rīga: LU Akadēmiskais apgāds.
Organisation for Economic Co-operation and Development. (2017). Future of work and skills. Retrieved from: https://www.oecd.org/els/emp/wcms_556984.pdf
Salīte, I., Drelinga, E., Iliško, Dz., Oļehnoviča, E., & Zariņa, S. (2016). Sustainability from the transdisciplinary perspective: An action research strategy for continuing education program development. Journal of Teacher Education for Sustainability, 18(2), 135–152.
Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning, 334–370. New York: MacMillan. Retrieved from: http://howtosolveit.pbworks.com/w/file/fetch/90467999/Schoenfeld_1992%20Learning%20to%20Think%20Mathematically.pdf
Selvi, K. (2010). Teachers’ Competencies. Cultura. International Journal of Philosophy of Culture and Axiology, 7(1), 167-175. DOI: 10.5840/cultura20107133
Serdyukov, P. (2017). Innovation in education: what works, what doesn’t, and what to do about it? Journal of Research in Innovative Teaching & Learning, 10(1), 4-33. Retrieved from: https://doi.org/10.1108/JRIT-10-2016-0007
Shandomo, H. M. (2010). The Role of Critical Reflection in Teacher Education. Retrieved from: https://files.eric.ed.gov/fulltext/EJ915885.pdf
Sondore A., Krastiņa E., Daugulis P., & Drelinga E. (2016). Pamatjēdzienu izpratne skolas matemātikas kompetenču apguvē. In V.Lubkina, S.Usca, A.Zvaigzne (Ed.), Proceedings of the International Scientific Conference Society.Integration.Education, Volume II, Rezekne: Rezeknes Academy of Technologies, 330-342.
Špona, A. (2006). Audzināšanas process teorijā un praksē. Rīga: Raka
Šteinberga, A. (2013). Pedagoģiskā psiholoģija. Rīga: Raka
Šteinberga, A., & Kazāke, D. (2018). Skolotāju kompetences struktūra un saturs. In V.Lubkina, S.Usca, A.Zvaigzne (Ed.), Proceedings of the International Scientific Conference Society.Integration.Education, Volume II, Rezekne: Rezeknes Academy of Technologies, 487-494.
Valsts izglītības satura centrs (2015, 2016, 2017, 2018, 2019). Valsts pārbaudes darbi. Retrieved from: https://www.visc.gov.lv/lv/valsts-parbaudes-darbi